Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 407, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30674944

ABSTRACT

Remote manipulation (triggering and guiding) of lightning in atmospheric conditions of thunderstorms has been the subject of intense scientific research for decades. High power, ultrashort-pulse lasers are considered attractive in generating plasma channels in air that could serve as conductors/diverters for lightning. However, two fundamental obstacles, namely the limited length and lifetime of such plasma channels prevented their realization to this date. In this paper, we report decisive experimental results of our multi-element broken wire concept that extends the generated plasma channels to the required tens of meters range. We obtain 13-meter-long plasma wire, limited only by our current experimental setup, with plasma conditions that could be sufficient for the leader initiation. This advance, coupled with our demonstrated method of laser heating for long time sustenance of the plasma channel, is a major, significant step towards controlling lightning.

2.
Phys Rev Lett ; 120(6): 065001, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481271

ABSTRACT

We report the lifetime of intense-laser (2×10^{19} W/cm^{2}) generated relativistic electron pulses in solids by measuring the time evolution of their Cherenkov emission. Using a picosecond resolution optical Kerr gating technique, we demonstrate that the electrons remain relativistic as long as 50 picoseconds-more than 1000 times longer than the incident light pulse. Numerical simulations of the propagation of relativistic electrons and the emitted Cherenkov radiation with Monte Carlo geant4 package reproduce the striking experimental findings.

3.
Nat Commun ; 8(1): 1184, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084961

ABSTRACT

Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm-1, which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.

4.
Opt Express ; 24(25): 28419-28432, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958487

ABSTRACT

Ultra-high intensity (> 1018 W/cm2), femtosecond (~30 fs) laser induced fast electron transport in a transparent dielectric has been studied for two laser systems having three orders of magnitude different peak to pedestal intensity contrast, using ultrafast time-resolved shadowgraphy. Use of a 400 nm femtosecond pulse as a probe enables the exclusive visualization of the dynamics of highest density electrons (> 7 × 1021 cm-3) observed so far. High picosecond contrast (~109) results in greater coupling of peak laser energy to the plasma electrons, enabling long (~1 mm), collimated (divergence angle ~2°) transport of fast electrons inside the dielectric medium at relativistic speeds (~0.66c). In comparison, the laser system with a contrast of ~106 has a large pre-plasma, limiting the coupling of laser energy to the solid and yielding limited fast electron injection into the dielectric. In the lower contrast case, bulk of the electrons expand as a cloud inside the medium with an order of magnitude lower speed than that of the fast electrons obtained with the high contrast laser. The expansion speed of the plasma towards vacuum is similar for the two contrasts.

5.
Rev Sci Instrum ; 86(12): 123505, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26724025

ABSTRACT

A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 µg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 µg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

SELECTION OF CITATIONS
SEARCH DETAIL
...