Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Energy Lett ; 9(6): 3001-3011, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38911532

ABSTRACT

Strain is an important property in halide perovskite semiconductors used for optoelectronic applications because of its ability to influence device efficiency and stability. However, descriptions of strain in these materials are generally limited to bulk averages of bare films, which miss important property-determining heterogeneities that occur on the nanoscale and at interfaces in multilayer device stacks. Here, we present three-dimensional nanoscale strain mapping using Bragg coherent diffraction imaging of individual grains in Cs0.1FA0.9Pb(I0.95Br0.05)3 and Cs0.15FA0.85SnI3 (FA = formamidinium) halide perovskite absorbers buried in full solar cell devices. We discover large local strains and striking intragrain and grain-to-grain strain heterogeneity, identifying distinct islands of tensile and compressive strain inside grains. Additionally, we directly image dislocations with surprising regularity in Cs0.15FA0.85SnI3 grains and find evidence for dislocation-induced antiphase boundary formation. Our results shine a rare light on the nanoscale strains in these materials in their technologically relevant device setting.

2.
ACS Energy Lett ; 9(2): 442-453, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38356934

ABSTRACT

This work explores electrochemical impedance spectroscopy to study recombination and ionic processes in all-perovskite tandem solar cells. We exploit selective excitation of each subcell to enhance or suppress the impedance signal from each subcell, allowing study of individual tandem subcells. We use this selective excitation methodology to show that the recombination resistance and ionic time constants of the wide gap subcell are increased with passivation. Furthermore, we investigate subcell-dependent degradation during maximum power point tracking and find an increase in recombination resistance and a decrease in capacitance for both subcells. Complementary optical and external quantum efficiency measurements indicate that the main driver for performance loss is the reduced capacity of the recombination layer to facilitate recombination due to the formation of a charge extraction barrier. This methodology highlights electrochemical impedance spectroscopy as a powerful tool to provide critical feedback to unlock the full potential of perovskite tandem solar cells.

3.
Energy Environ Sci ; 17(2): 760-769, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38269299

ABSTRACT

Despite the rapid rise in the performance of a variety of perovskite optoelectronic devices with vertical charge transport, the effects of ion migration remain a common and longstanding Achilles' heel limiting the long-term operational stability of lead halide perovskite devices. However, there is still limited understanding of the impact of tin (Sn) substitution on the ion dynamics of lead (Pb) halide perovskites. Here, we employ scan-rate-dependent current-voltage measurements on Pb and mixed Pb-Sn perovskite solar cells to show that short circuit current losses at lower scan rates, which can be traced to the presence of mobile ions, are present in both kinds of perovskites. To understand the kinetics of ion migration, we carry out scan-rate-dependent hysteresis analyses and temperature-dependent impedance spectroscopy measurements, which demonstrate suppressed ion migration in Pb-Sn devices compared to their Pb-only analogues. By linking these experimental observations to first-principles calculations on mixed Pb-Sn perovskites, we reveal the key role played by Sn vacancies in increasing the iodide ion migration barrier due to local structural distortions. These results highlight the beneficial effect of Sn substitution in mitigating undesirable ion migration in halide perovskites, with potential implications for future device development.

4.
J Am Chem Soc ; 145(39): 21330-21343, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738152

ABSTRACT

The family of hybrid organic-inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic-inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10-100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic-organic electronic properties through the wide range of functionalities available in the world of organics.

5.
Nat Mater ; 22(2): 216-224, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36702888

ABSTRACT

Investigation of the inherent field-driven charge transport behaviour of three-dimensional lead halide perovskites has largely remained challenging, owing to undesirable ionic migration effects near room temperature and dipolar disorder instabilities prevalent specifically in methylammonium-and-lead-based high-performing three-dimensional perovskite compositions. Here, we address both these challenges and demonstrate that field-effect transistors based on methylammonium-free, mixed metal (Pb/Sn) perovskite compositions do not suffer from ion migration effects as notably as their pure-Pb counterparts and reliably exhibit hysteresis-free p-type transport with a mobility reaching 5.4 cm2 V-1 s-1. The reduced ion migration is visualized through photoluminescence microscopy under bias and is manifested as an activated temperature dependence of the field-effect mobility with a low activation energy (~48 meV) consistent with the presence of the shallow defects present in these materials. An understanding of the long-range electronic charge transport in these inherently doped mixed metal halide perovskites will contribute immensely towards high-performance optoelectronic devices.

6.
ACS Photonics ; 9(12): 3958-3966, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36573164

ABSTRACT

Photodetectors with multiple spectral response bands have shown promise to improve imaging and communications through the switchable detection of different photon energies. However, demonstrations to date have been limited to only two bands and lack capability for fast switching in situ. Here, we exploit the band gap tunability and capability of all-perovskite tandem solar cells to demonstrate a new device concept realizing four spectral bands of response from a single multijunction device, with fast, optically controlled switching between the bands. The response to monochromatic light is highly selective and narrowband without the need for additional filters and switches to broader response bands on applying bias light. Sensitive photodetection above 6 × 1011 Jones is demonstrated in all modes, with rapid switching response times of <250 ns. We demonstrate proof of principle on how the manipulation of the modular multiband detector response through light conditions enables diverse applications in optical communications with secure encryption.

7.
Chem Sci ; 12(44): 14686-14699, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34820084

ABSTRACT

Lead-free halides with perovskite-related structures, such as the vacancy-ordered perovskite Cs3Bi2Br9, are of interest for photovoltaic and optoelectronic applications. We find that addition of SnBr2 to the solution-phase synthesis of Cs3Bi2Br9 leads to substitution of up to 7% of the Bi(iii) ions by equal quantities of Sn(ii) and Sn(iv). The nature of the substitutional defects was studied by X-ray diffraction, 133Cs and 119Sn solid state NMR, X-ray photoelectron spectroscopy and density functional theory calculations. The resulting mixed-valence compounds show intense visible and near infrared absorption due to intervalence charge transfer, as well as electronic transitions to and from localised Sn-based states within the band gap. Sn(ii) and Sn(iv) defects preferentially occupy neighbouring B-cation sites, forming a double-substitution complex. Unusually for a Sn(ii) compound, the material shows minimal changes in optical and structural properties after 12 months storage in air. Our calculations suggest the stabilisation of Sn(ii) within the double substitution complex contributes to this unusual stability. These results expand upon research on inorganic mixed-valent halides to a new, layered structure, and offer insights into the tuning, doping mechanisms, and structure-property relationships of lead-free vacancy-ordered perovskite structures.

8.
Adv Mater ; 33(40): e2102300, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34432925

ABSTRACT

Riding on the coat tails of rapid developments in single-junction halide perovskite solar cells, all-perovskite multijunction solar cells have recently garnered significant attention, with the highest power-conversion efficiency already reaching 25.6%. Much of this progress has been fueled by the rapid rise in the photovoltaic performance of low-bandgap halide perovskite absorbers, materials, which, to date, have only been achievable by the partial or complete substitution of lead with tin. However, much room still exists to develop a more critical understanding of key material properties in these low-bandgap perovskites. Herein, the key optoelectronic properties of absorption, carrier generation, recombination, and transport in these tin-containing perovskites are discussed, showing that intrinsic doping distinctively impacts many of these properties, thereby rendering this class of halide perovskites unique within the family. Current understanding of the mechanisms that degrade optoelectronic performance in these materials and the corresponding devices are also summarized. These collective results highlight an important interplay between doping, defects, and degradation that will need to be controlled. Finally, the current gaps in understanding of these low-bandgap perovskites are outlined, thereby providing guidelines for further research, which will unlock their full potential for realizing a plethora of high-performance optoelectronic devices.

9.
J Phys Chem Lett ; 11(16): 6505-6512, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32693601

ABSTRACT

It is common practice in the lead halide perovskite solar cell field to add a small molar excess of lead iodide (PbI2) to the precursor solution to increase the device performance. However, recent reports have shown that an excess of PbI2 can accelerate performance loss. In addition, PbI2 is photoactive (band gap ∼2.3 eV), which may lead to parasitic absorption losses in a solar cell. Here we show that devices using small quantities of excess PbI2 exhibit better device performance as compared with stoichiometric devices, both initially and for the duration of a stability test under operating conditions, primarily by enhancing the charge extraction. However, the photolysis of PbI2 negates the beneficial effect on charge extraction by leaving voids in the perovskite film and introduces trap states that are detrimental for device performance. We propose that although excess PbI2 provides a good template for enhanced performance, the community must continue to seek other additives or synthesis routes that fulfill the same beneficial role as excess PbI2, but without the photolysis that negates these beneficial effects under long-term device operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...