Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 274(Pt 1): 133316, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908618

ABSTRACT

This study focuses on the optimization of Hydrastis canadensis-based nanocarriers in environmental and microbial applications like antibacterial and dye degradation. Hydrastis canadensis (H. canadensis) is loaded into the nanocarrier using a gelation method. Characterization involves pH analysis, UV-VIS spectrophotometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, high-performance liquid chromatography, encapsulation efficiency. Further antimicrobial activity against Staphylococcus aureus and Escherichia coli were tested. Dye degradation was evaluated at concentrations of 1 % of high molecular (HM) and 1.5 % of low molecular (LM) chitosan nanoparticles with both 3C and 1000C concentrations of the drug. The obtained results confirm the presence of chitosan nanocarrier alongside the pure drug in 1 % HM and 1.5 % LM chitosan particles with a notable encapsulation efficiency activity in both 3C and 1000C concentrations. Antimicrobial studies were carried out using the agar well diffusion method and revealed a significant zone of inhibition of 20 mm and 25 mm for E. coli and S. aureus, respectively in chitosan nanocarrier-loaded samples compared to pure drug and chitosan nanocarriers samples. The dye degradation studies of four dyes methylene blue, methylene orange, methylene red, and safranin using both pure drugs and chitosan nanocarrier-loaded drugs showed the highest percentage of degradation (76 %) against methylene blue in the chitosan nanocarrier-drug loaded formulation. These findings cumulatively underscore chitosan nanoparticles can be used as an effective carrier for Hydrastis Canadensis, with enhanced antimicrobial and dye degradation capabilities. Varied concentrations and molecular weights highlight the versatility of the ionotropic gelation method in optimizing drug delivery. Enhanced efficacy of the nanocarrier was evident in the observed zone of inhibition in antimicrobial testing. The substantial degradation percentage in methylene blue emphasizes the formulation's applicability in environmental dye removal processes, with potential avenues for improvement explored through interactions between the chitosan nanocarrier and H. canadensis characteristics. Future investigations may focus on scaling up the optimized formulation for large-scale applications and exploring release kinetics and comprehensive toxicity assessments for a holistic understanding of potential environmental and biomedical implications.

2.
Chemosphere ; 313: 137475, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36528154

ABSTRACT

Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it. Despite the fact that few researches have been undertaken on invertebrate exposure, accumulation, and biological implications, it is apparent that a wide range of pollutants can accumulate in the tissues of aquatic insects, earthworms, amphipod crustaceans, and mollusks. Due to long-term stability during long-distance transit, a number of chemical and microbiological agents that were not previously deemed pollutants have been found in various environmental compartments. The uptake of such pollutants by the aquatic organism is done through the process of bioaccumulation when dangerous compounds accumulate in living beings while biomagnification is the process of a pollutant becoming more hazardous as it moves up the trophic chain. Organic and metal pollution harms animals of every species studied so far, from bacteria to phyla in between. The environmental protection agency says these poisons harm humans as well as a variety of aquatic organisms when the water quality is sacrificed in typical wastewater treatment systems. Contrary to popular belief, treated effluents discharged into aquatic bodies contain considerable levels of Anthropogenic contaminants. This evolution necessitates a more robust and recent advancement in the field of remediation and their techniques to completely discharge the various organic and inorganic contaminants.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Humans , Ecosystem , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis , Aquatic Organisms , Water Quality , Environmental Monitoring/methods
3.
Environ Res ; 216(Pt 2): 114400, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36265604

ABSTRACT

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.


Subject(s)
Lignin , Xylans , Lignin/chemistry , Cellulose/chemistry , Biomass
4.
Environ Res ; 214(Pt 2): 113867, 2022 11.
Article in English | MEDLINE | ID: mdl-35843279

ABSTRACT

Graphene has revolutionized the field of energy and storage sectors. Out of the total number of nosocomial infections diagnosed all around the world, the majority of the cases (around 70%) are found to be due to the medical device or assistance utilized while treating the patient. Combating these diseases is vital as they cause a nuisance to the patients and medical practitioners. Coatings of graphene and its derivatives hold the key to the formation of special surfaces that can rupture microbial cells using their sharp edges, ultimately leading to nuclear and cellular fragmentation. Their incorporation as a whole or as a part in the hospital apparel and the medical device has aided medical practitioners to combat many nosocomial diseases. Graphene is found to be highly virulent with broad-spectrum antimicrobial activity against nosocomial strains and biofilm formation. Their alternate mode of action like trapping and charge transfer has also been discussed well in the present review. The various combinational forms of graphene with its conjugates as a suitable agent to combat nosocomial infections and a potential coating for newer challenges like COVID-19 infections has also been assessed in the current study. Efficiency of graphene sheets has been found to be around 89% with a reaction time as less as 3 h. Polymers with graphene seem to have a higher potency against biofilm formation. When combined with graphene oxide, silver nanoparticles provide 99% activity against nosocomial pathogens. In conclusion, this review would be a guiding light for scientists working with graphene-based coatings to unfold the potentials of this marvelous commodity to tackle the present and future pandemics to come.


Subject(s)
COVID-19 , Cross Infection , Graphite , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Biofilms , Cross Infection/epidemiology , Cross Infection/prevention & control , Humans , Silver
5.
Saudi J Biol Sci ; 29(4): 2033-2046, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531220

ABSTRACT

Background: The world population is continuously growing. It has been estimated that half of the world's population is from the Asian continent, mainly from China and India. Overpopulation may lead to many societal problems as well as to changes in the habitat. Birth control measures are thus needed to control this growth. However, for the last 50-60 years, there have not been any improvements in the field of contraception. Nevertheless, the immunocontraceptive vaccine is an emerging field, and it might be the only replacement for the existing mode of contraception for the next millennium. Sexually transmitted infections (STIs) are frequent, and their transmission rate increases yearly. As antibiotics are the prevailing treatment for this kind of infections, resistance in humans has increased; therefore, having effective antibiotic treatments for STIs is now a concern. Vaccines against STIs are now needed. It is thought that the improvements in the fields of proteomics, immunomics, metabolomics, and other omics will help in the successful development of vaccines. Objective: To collect and review the literature about recent advancements in immunocontraception and vaccines against sexually transmitted diseases/infections. Methods: Reliable scientific databases, such as PubMed Central, PubMed, Scopus, Science Direct, and Goggle Scholar, were consulted. Publications bearing important information on targeted antigens/immunogens for contraceptive vaccine design and advancements in vaccine development for STIs were gathered and tabulated, and details were analyzed as per the theme of each study. Results: Important antigens that have a specific role in fertility have been studied extensively for their contraceptive nature. Additionally, the advancements in the screening for the best antigens, according to their antigenic nature and how they elicit immune responses for an extended period were also studied. Herd immunity for STIs and advancements in the development of vaccines for syphilis, gonorrhea, and herpes simplex virus were also studied and tabulated in this review. An extensive knowledge on STIs vaccines was gained. Conclusion: This extensive review is aimed to provide insights for active researchers in vaccinology, immunology, and reproductive biology. Advancements in the development of vaccines for different STIs can be gathered as a wholesome report.

6.
Int J Biol Macromol ; 209(Pt A): 951-962, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35447263

ABSTRACT

Human male infertility affects approximately 1/10 couples worldwide, and its prevalence is found more in developed countries. Along with sperm cells, the secretions of the prostate, seminal vesicle and epididymis plays a major role in proper fertilization. Many studies have proven the functions of seminal vesicle secretions, especially semenogelin protein, as an optimiser for fertilization. Semenogelin provides the structural components for coagulum formation after ejaculation. It binds with eppin and is found to have major functions like motility of sperm, transporting the sperm safely in the immune rich female reproductive tract until the sperm cells reach the egg intact. The capacitation process is essential for proper fertilization and semenogelin involved in mediating capacitation in time. Also, it has control of events towards the first step in the fertilization process. It is a Zn ions binding protein, and Zn ions act as a cofactor that helps in the proper motility of sperm cells. Therefore, any imbalance in protein that automatically affect sperm physiology and fertility status. This review sheds a comprehensive and critical view on the significant functions of semenogelin in fertilization. This review can open up advanced proteomics research on semenogelin towards unravelling molecular mechanisms in fertilization.


Subject(s)
Infertility, Male , Seminal Vesicle Secretory Proteins , Female , Fertilization , Humans , Infertility, Male/metabolism , Male , Prospective Studies , Proteins/metabolism , Seminal Vesicle Secretory Proteins/chemistry , Seminal Vesicle Secretory Proteins/metabolism , Spermatozoa/metabolism
7.
Bioresour Technol ; 344(Pt A): 126171, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34695586

ABSTRACT

The need to develop sustainable alternatives for pretreatment and hydrolysis of lignocellulosic biomass (LCB) is a massive concern in the industrial sector today. Breaking down of LCB yields sugars and fuel in the bulk scale. If explored under nanotechnology, LCB can be refined to yield high-performance fuel sources. The toxicity and cost of conventional methods can be reduced by applying nanoparticles (NPs) in refining LCB. Immobilization of enzymes onto NPs or used in conjugation with nanomaterials would instill specific and eco-friendly options for hydrolyzing LCB. Nanomaterials increase the proficiency, reusability, and stability of enzymes. Notably, magnetic NPs have bagged their place in the downstream processing of LCB effluents due to their efficient separation and cost-effectiveness. The current review highlights the role of nanotechnology and its particles in refining LCB into various commercial precursors and value-added products. The relationship between nanotechnology and LCB refinery is portrayed effectively in the present study.


Subject(s)
Biofuels , Lignin , Biomass , Hydrolysis , Nanotechnology
8.
Environ Res ; 204(Pt A): 111968, 2022 03.
Article in English | MEDLINE | ID: mdl-34453898

ABSTRACT

The changes in lifestyle and living conditions have affected not only humans but also microorganisms. As man invents new drugs and therapies, pathogens alter themselves to survive and thrive. Multiple drug resistance (MDR) is the talk of the town for decades now. Many generations of medications have been termed useless as MDR rises among the infectious population. The surge in nanotechnology has brought a new hope in reducing this aspect of resistance in pathogens. It has been observed in several laboratory-based studies that the use of nanoparticles had a synergistic effect on the antibiotic being administered to the pathogen; several resistant strains scummed to the stress created by the nanoparticles and became susceptible to the drug. The major cause of resistance to date is the efflux system, which makes the latest generation of antibiotics ineffective without reaching the target site. If species-specific nanomaterials are used to control the activity of efflux pumps, it could revolutionize the field of medicine and make the previous generation resistant medications active once again. Therefore, the current study was devised to assess and review nanoparticles' role on efflux systems and discuss how specialized particles can be designed towards an infectious host's particular drug ejection systems.


Subject(s)
Membrane Transport Proteins , Nanostructures , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple , Humans , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...