Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38895282

ABSTRACT

Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFß. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.

2.
Nat Struct Mol Biol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671229

ABSTRACT

Inheritance of 5-methylcytosine from one cell generation to the next by DNA methyltransferase 1 (DNMT1) plays a key role in regulating cellular identity. While recent work has shown that the activity of DNMT1 is imprecise, it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides to find that the fidelity of DNMT1-mediated maintenance methylation is related to the local density of DNA methylation and the landscape of histone modifications. To gain deeper insights into methylation/demethylation turnover dynamics, we first extended Dyad-seq to quantify all combinations of 5-methylcytosine and 5-hydroxymethylcytosine at individual CpG dyads. Next, to understand how cell state transitions impact maintenance methylation, we scaled the method down to jointly profile genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from single cells (scDyad&T-seq). Using scDyad&T-seq, we demonstrate that, while distinct cell states can substantially impact the activity of the maintenance methylation machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.

3.
ACS Biomater Sci Eng ; 10(4): 2177-2187, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38466617

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) accounts for about 90% of all pancreatic cancer cases. Five-year survival rates have remained below 12% since the 1970s, in part due to the difficulty in detection prior to metastasis (migration and invasion into neighboring organs and glands). Mechanical memory is a concept that has emerged over the past decade that may provide a path toward understanding how invading PDAC cells "remember" the mechanical properties of their diseased ("stiff", elastic modulus, E ≈ 10 kPa) microenvironment even while invading a healthy ("soft", E ≈ 1 kPa) microenvironment. Here, we investigated the role of mechanical priming by culturing a dilute suspension of PDAC (FG) cells within a 3D, rheologically tunable microgel platform from hydrogels with tunable mechanical properties. We conducted a suite of acute (short-term) priming studies where we cultured PDAC cells in either a soft (E ≈ 1 kPa) or stiff (E ≈ 10 kPa) environment for 6 h, then removed and placed them into a new soft or stiff 3D environment for another 18 h. Following these steps, we conducted RNA-seq analyses to quantify gene expression. Initial priming in the 3D culture showed persistent gene expression for the duration of the study, regardless of the subsequent environments (stiff or soft). Stiff 3D culture was associated with the downregulation of tumor suppressors (LATS1, BCAR3, CDKN2C), as well as the upregulation of cancer-associated genes (RAC3). Immunofluorescence staining (BCAR3, RAC3) further supported the persistence of this cellular response, with BCAR3 upregulated in soft culture and RAC3 upregulated in stiff-primed culture. Stiff-primed genes were stratified against patient data found in The Cancer Genome Atlas (TCGA). Upregulated genes in stiff-primed 3D culture were associated with decreased survival in patient data, suggesting a link between patient survival and mechanical priming.


Subject(s)
Carcinoma, Pancreatic Ductal , Microgels , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Hydrogels , Tumor Microenvironment/genetics
4.
mSystems ; 8(6): e0028123, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37855606

ABSTRACT

IMPORTANCE: Microbes present one of the most diverse sources of biochemistry in nature, and mRNA sequencing provides a comprehensive view of this biological activity by quantitatively measuring microbial transcriptomes. However, efficient mRNA capture for sequencing presents significant challenges in prokaryotes as mRNAs are not poly-adenylated and typically make up less than 5% of total RNA compared with rRNAs that exceed 80%. Recently developed methods for sequencing bacterial mRNA typically rely on depleting rRNA by tiling large probe sets against rRNAs; however, such approaches are expensive, time-consuming, and challenging to scale to varied bacterial species and complex microbial communities. Therefore, we developed EMBR-seq+, a method that requires fewer than 10 short oligonucleotides per rRNA to achieve up to 99% rRNA depletion in diverse bacterial species. Finally, EMBR-seq+ resulted in a deeper view of the transcriptome, enabling systematic quantification of how microbial interactions result in altering the transcriptional state of bacteria within co-cultures.


Subject(s)
Bacteria , RNA, Ribosomal , Coculture Techniques , Bacteria/genetics , RNA, Ribosomal/genetics , Transcriptome/genetics , RNA, Messenger/genetics
5.
Cell Syst ; 14(7): 551-562.e5, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37473728

ABSTRACT

The integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes cellular responses. Dissecting these computations has been difficult because physical and chemical inducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation. Using light to control opto-PKR dynamics, we traced information flow through the transcriptome and for key downstream ISR effectors. Our analyses revealed a biphasic, proportional transcriptional response with two dynamic modes, transient and gradual, that correspond to adaptive and terminal outcomes. We then constructed an ordinary differential equation (ODE) model of the ISR, which demonstrated the dependence of future stress responses on past stress. Finally, we tested our model using high-throughput light-delivery to map the stress memory landscape. Our results demonstrate that cells encode information in stress levels, durations, and the timing between encounters. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Optogenetics , Signal Transduction , Signal Transduction/genetics , Transcriptome
6.
bioRxiv ; 2023 May 06.
Article in English | MEDLINE | ID: mdl-37205524

ABSTRACT

Transmission of 5-methylcytosine (5mC) from one cell generation to the next plays a key role in regulating cellular identity in mammalian development and diseases. While recent work has shown that the activity of DNMT1, the protein responsible for the stable inheritance of 5mC from mother to daughter cells, is imprecise; it remains unclear how the fidelity of DNMT1 is tuned in different genomic and cell state contexts. Here we describe Dyad-seq, a method that combines enzymatic detection of modified cytosines with nucleobase conversion techniques to quantify the genome-wide methylation status of cytosines at the resolution of individual CpG dinucleotides. We find that the fidelity of DNMT1-mediated maintenance methylation is directly related to the local density of DNA methylation, and for genomic regions that are lowly methylated, histone modifications can dramatically alter the maintenance methylation activity. Further, to gain deeper insights into the methylation and demethylation turnover dynamics, we extended Dyad-seq to quantify all combinations of 5mC and 5-hydroxymethylcytosine (5hmC) at individual CpG dyads to show that TET proteins preferentially hydroxymethylate only one of the two 5mC sites in a symmetrically methylated CpG dyad rather than sequentially convert both 5mC to 5hmC. To understand how cell state transitions impact DNMT1-mediated maintenance methylation, we scaled the method down and combined it with the measurement of mRNA to simultaneously quantify genome-wide methylation levels, maintenance methylation fidelity and the transcriptome from the same cell (scDyad&T-seq). Applying scDyad&T-seq to mouse embryonic stem cells transitioning from serum to 2i conditions, we observe dramatic and heterogenous demethylation and the emergence of transcriptionally distinct subpopulations that are closely linked to the cell-to-cell variability in loss of DNMT1-mediated maintenance methylation activity, with regions of the genome that escape 5mC reprogramming retaining high levels of maintenance methylation fidelity. Overall, our results demonstrate that while distinct cell states can substantially impact the genome-wide activity of the DNA methylation maintenance machinery, locally there exists an intrinsic relationship between DNA methylation density, histone modifications and DNMT1-mediated maintenance methylation fidelity that is independent of cell state.

7.
STAR Protoc ; 2(4): 101016, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34950891

ABSTRACT

The asymmetric distribution of 5-hydroxymethylcytosine (5hmC) between two DNA strands of a chromosome enables endogenous reconstruction of cellular lineages at an individual-cell-division resolution. Further, when integrated with data on genomic variants to infer clonal lineages, this combinatorial information accurately reconstructs larger lineage trees. Here, we provide a detailed protocol for single-cell 5-hydroxymethylcytosine and genomic DNA sequencing (scH&G-seq) to simultaneously quantify 5hmC and genomic DNA from the same cell to reconstruct lineage trees at a single-cell-division resolution. For complete details on the use and execution of this protocol, please refer to Wangsanuwat et al., 2021.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA/genetics , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , 5-Methylcytosine/chemistry , Cell Division , Cell Line , Computational Biology/methods , Humans
8.
Cell Rep Methods ; 1(4)2021 08 23.
Article in English | MEDLINE | ID: mdl-34590075

ABSTRACT

Lineage reconstruction is central to understanding tissue development and maintenance. To overcome the limitations of current techniques that typically reconstruct clonal trees using genetically encoded reporters, we report scPECLR, a probabilistic algorithm to endogenously infer lineage trees at a single-cell-division resolution by using 5-hydroxymethylcytosine (5hmC). When applied to 8-cell pre-implantation mouse embryos, scPECLR predicts the full lineage tree with greater than 95% accuracy. In addition, we developed scH&G-seq to sequence both 5hmC and genomic DNA from the same cell. Given that genomic DNA sequencing yields information on both copy number variations and single-nucleotide polymorphisms, when combined with scPECLR it enables more accurate lineage reconstruction of larger trees. Finally, we show that scPECLR can also be used to map chromosome strand segregation patterns during cell division, thereby providing a strategy to test the "immortal strand" hypothesis. Thus, scPECLR provides a generalized method to endogenously reconstruct lineage trees at an individual-cell-division resolution.


Subject(s)
DNA Copy Number Variations , DNA , Mice , Animals , Sequence Analysis, DNA/methods , DNA/genetics , Genomics
9.
Nat Commun ; 12(1): 1286, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627650

ABSTRACT

DNA methylation (5mC) is central to cellular identity. The global erasure of 5mC from the parental genomes during preimplantation mammalian development is critical to reset the methylome of gametes to the cells in the blastocyst. While active and passive modes of demethylation have both been suggested to play a role in this process, the relative contribution of these two mechanisms to 5mC erasure remains unclear. Here, we report a single-cell method (scMspJI-seq) that enables strand-specific quantification of 5mC, allowing us to systematically probe the dynamics of global demethylation. When applied to mouse embryonic stem cells, we identified substantial cell-to-cell strand-specific 5mC heterogeneity, with a small group of cells displaying asymmetric levels of 5mCpG between the two DNA strands of a chromosome suggesting loss of maintenance methylation. Next, in preimplantation mouse embryos, we discovered that methylation maintenance is active till the 16-cell stage followed by passive demethylation in a fraction of cells within the early blastocyst at the 32-cell stage of development. Finally, human preimplantation embryos qualitatively show temporally delayed yet similar demethylation dynamics as mouse embryos. Collectively, these results demonstrate that scMspJI-seq is a sensitive and cost-effective method to map the strand-specific genome-wide patterns of 5mC in single cells.


Subject(s)
DNA Demethylation , DNA Methylation/physiology , Animals , Blastocyst/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/deficiency , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation/genetics , Embryonic Development/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Humans , Mice , Mice, Knockout , Pregnancy
10.
BMC Genomics ; 21(1): 717, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33066726

ABSTRACT

BACKGROUND: RNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 5S, 16S and 23S rRNA using blocking primers to prevent their amplification. RESULTS: EMBR-seq results in 90% of the sequenced RNA molecules from an E. coli culture deriving from mRNA. We demonstrate that this increased efficiency provides a deeper view of the transcriptome without introducing technical amplification-induced biases. Moreover, compared to recent methods that employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single or a few oligonucleotides per rRNA, thereby making this new technology significantly more cost-effective, especially when applied to varied bacterial species. Finally, compared to existing commercial kits for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the transcriptome from more than 500-fold lower starting total RNA. CONCLUSIONS: EMBR-seq provides an efficient and cost-effective approach to quantify global gene expression profiles from low input bacterial samples.


Subject(s)
Escherichia coli , RNA, Ribosomal , Animals , Cost-Benefit Analysis , Escherichia coli/genetics , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
11.
Nat Protoc ; 15(6): 1922-1953, 2020 06.
Article in English | MEDLINE | ID: mdl-32350457

ABSTRACT

Protein-DNA interactions are essential for establishing cell type-specific chromatin architecture and gene expression. We recently developed scDam&T-seq, a multi-omics method that can simultaneously quantify protein-DNA interactions and the transcriptome in single cells. The method effectively combines two existing methods: DNA adenine methyltransferase identification (DamID) and CEL-Seq2. DamID works through the tethering of a protein of interest (POI) to the Escherichia coli DNA adenine methyltransferase (Dam). Upon expression of this fusion protein, DNA in proximity to the POI is methylated by Dam and can be selectively digested and amplified. CEL-Seq2, in contrast, makes use of poly-dT primers to reverse transcribe mRNA, followed by linear amplification through in vitro transcription. scDam&T-seq is the first technique capable of providing a combined readout of protein-DNA contact and transcription from single-cell samples. Once suitable cell lines have been established, the protocol can be completed in 5 d, with a throughput of hundreds to thousands of cells. The processing of raw sequencing data takes an additional 1-2 d. Our method can be used to understand the transcriptional changes a cell undergoes upon the DNA binding of a POI. It can be performed in any laboratory with access to FACS, robotic and high-throughput-sequencing facilities.


Subject(s)
DNA/metabolism , Gene Expression Profiling/methods , Genomics/methods , Proteins/metabolism , Animals , Cell Line , Cell Line, Tumor , DNA/genetics , DNA Methylation , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Mice , Protein Binding , Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Transcriptome
12.
Stem Cell Reports ; 14(3): 433-446, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32059791

ABSTRACT

The development of an in vitro system in which human primordial germ cell-like cells (hPGCLCs) are generated from human pluripotent stem cells (hPSCs) has been invaluable to further our understanding of human primordial germ cell (hPGC) specification. However, the means to evaluate the next fundamental steps in germ cell development have not been well established. In this study we describe a two dimensional extended culture system that promotes proliferation of specified hPGCLCs, without reversion to a pluripotent state. We demonstrate that hPGCLCs in extended culture undergo partial epigenetic reprogramming, mirroring events described in hPGCs in vivo, including a genome-wide reduction in DNA methylation and maintenance of depleted H3K9me2. This extended culture system provides a new approach for expanding the number of hPGCLCs for downstream technologies, including transplantation, molecular screening, or possibly the differentiation of hPGCLCs into gametes by in vitro gametogenesis.


Subject(s)
Cell Culture Techniques/methods , DNA Methylation , Germ Cells/cytology , Cell Proliferation , Cell Self Renewal , Cell Survival , Cells, Cultured , Chromatin Assembly and Disassembly , DNA Demethylation , DNA Methylation/genetics , Histones/metabolism , Humans , Transcription, Genetic , Transcriptome/genetics
13.
PLoS Biol ; 17(9): e3000453, 2019 09.
Article in English | MEDLINE | ID: mdl-31557150

ABSTRACT

The link between single-cell variation and population-level fate choices lacks a mechanistic explanation despite extensive observations of gene expression and epigenetic variation among individual cells. Here, we found that single human embryonic stem cells (hESCs) have different and biased differentiation potentials toward either neuroectoderm or mesendoderm depending on their G1 lengths before the onset of differentiation. Single-cell variation in G1 length operates in a dynamic equilibrium that establishes a G1 length probability distribution for a population of hESCs and predicts differentiation outcome toward neuroectoderm or mesendoderm lineages. Although sister stem cells generally share G1 lengths, a variable proportion of cells have asymmetric G1 lengths, which maintains the population dispersion. Environmental Wingless-INT (WNT) levels can control the G1 length distribution, apparently as a means of priming the fate of hESC populations once they undergo differentiation. As a downstream mechanism, global 5-hydroxymethylcytosine levels are regulated by G1 length and thereby link G1 length to differentiation outcomes of hESCs. Overall, our findings suggest that intrapopulation heterogeneity in G1 length underlies the pluripotent differentiation potential of stem cell populations.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/physiology , G1 Phase , Wnt Proteins/physiology , Cell Line , Humans
14.
Nat Biotechnol ; 37(7): 766-772, 2019 07.
Article in English | MEDLINE | ID: mdl-31209373

ABSTRACT

Protein-DNA interactions are critical to the regulation of gene expression, but it remains challenging to define how cell-to-cell heterogeneity in protein-DNA binding influences gene expression variability. Here we report a method for the simultaneous quantification of protein-DNA contacts by combining single-cell DNA adenine methyltransferase identification (DamID) with messenger RNA sequencing of the same cell (scDam&T-seq). We apply scDam&T-seq to reveal how genome-lamina contacts or chromatin accessibility correlate with gene expression in individual cells. Furthermore, we provide single-cell genome-wide interaction data on a polycomb-group protein, RING1B, and the associated transcriptome. Our results show that scDam&T-seq is sensitive enough to distinguish mouse embryonic stem cells cultured under different conditions and their different chromatin landscapes. Our method will enable the analysis of protein-mediated mechanisms that regulate cell-type-specific transcriptional programs in heterogeneous tissues.


Subject(s)
Single-Cell Analysis/methods , Transcriptome , Animals , Cell Line , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Protein Binding
15.
Nat Biotechnol ; 34(8): 852-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27347753

ABSTRACT

The epigenetic DNA modification 5-hydroxymethylcytosine (5hmC) has crucial roles in development and gene regulation. Quantifying the abundance of this epigenetic mark at the single-cell level could enable us to understand its roles. We present a single-cell, genome-wide and strand-specific 5hmC sequencing technology, based on 5hmC glucosylation and glucosylation-dependent digestion of DNA, that reveals pronounced cell-to-cell variability in the abundance of 5hmC on the two DNA strands of a given chromosome. We develop a mathematical model that reproduces the strand bias and use this model to make two predictions. First, the variation in strand bias should decrease when 5hmC turnover increases. Second, the strand bias of two sister cells should be strongly anti-correlated. We validate these predictions experimentally, and use our model to reconstruct lineages of two- and four-cell mouse embryos, showing that single-cell 5hmC sequencing can be used as a lineage reconstruction tool.


Subject(s)
5-Methylcytosine/analogs & derivatives , Cell Lineage/genetics , Chromosomes/chemistry , Chromosomes/genetics , Embryonic Development/genetics , Sequence Analysis, DNA/methods , 5-Methylcytosine/chemistry , Animals , Cell Differentiation/genetics , Chromosome Mapping/methods , Computer Simulation , Epigenesis, Genetic/genetics , Genetic Variation/genetics , Male , Mice , Models, Chemical , Models, Genetic
16.
Cell ; 163(1): 134-47, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26365489

ABSTRACT

Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.


Subject(s)
Chromatin/metabolism , Nuclear Lamina/metabolism , Single-Cell Analysis/methods , Cell Line, Tumor , Chromatin/chemistry , Chromosomes/chemistry , Chromosomes/metabolism , Genome-Wide Association Study , Humans , In Situ Hybridization, Fluorescence , Interphase
17.
Mol Syst Biol ; 11(5): 806, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25943345

ABSTRACT

While gene expression noise has been shown to drive dramatic phenotypic variations, the molecular basis for this variability in mammalian systems is not well understood. Gene expression has been shown to be regulated by promoter architecture and the associated chromatin environment. However, the exact contribution of these two factors in regulating expression noise has not been explored. Using a dual-reporter lentiviral model system, we deconvolved the influence of the promoter sequence to systematically study the contribution of the chromatin environment at different genomic locations in regulating expression noise. By integrating a large-scale analysis to quantify mRNA levels by smFISH and protein levels by flow cytometry in single cells, we found that mean expression and noise are uncorrelated across genomic locations. Furthermore, we showed that this independence could be explained by the orthogonal control of mean expression by the transcript burst size and noise by the burst frequency. Finally, we showed that genomic locations displaying higher expression noise are associated with more repressed chromatin, thereby indicating the contribution of the chromatin environment in regulating expression noise.


Subject(s)
Epigenesis, Genetic , Proteins/analysis , RNA, Messenger/analysis , Chromatin/metabolism , Genomics , HEK293 Cells , Half-Life , Humans , Jurkat Cells , Models, Genetic , Promoter Regions, Genetic
18.
Nat Biotechnol ; 33(3): 285-289, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25599178

ABSTRACT

Single-cell genomics and single-cell transcriptomics have emerged as powerful tools to study the biology of single cells at a genome-wide scale. However, a major challenge is to sequence both genomic DNA and mRNA from the same cell, which would allow direct comparison of genomic variation and transcriptome heterogeneity. We describe a quasilinear amplification strategy to quantify genomic DNA and mRNA from the same cell without physically separating the nucleic acids before amplification. We show that the efficiency of our integrated approach is similar to existing methods for single-cell sequencing of either genomic DNA or mRNA. Further, we find that genes with high cell-to-cell variability in transcript numbers generally have lower genomic copy numbers, and vice versa, suggesting that copy number variations may drive variability in gene expression among individual cells. Applications of our integrated sequencing approach could range from gaining insights into cancer evolution and heterogeneity to understanding the transcriptional consequences of copy number variations in healthy and diseased tissues.


Subject(s)
Genome , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis , Transcriptome/genetics , Cell Line, Tumor , DNA/genetics , Gene Expression Regulation , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Cell Mol Bioeng ; 7(3): 320-333, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-26191086

ABSTRACT

Human immunodeficiency virus 1 (HIV) latency remains a significant obstacle to curing infected patients. One promising therapeutic strategy is to purge the latent cellular reservoir by activating latent HIV with latency-reversing agents (LRAs). In some cases, co-drugging with multiple LRAs is necessary to activate latent infections, but few studies have established quantitative criteria for determining when co-drugging is required. Here we systematically quantified drug interactions between histone deacetylase inhibitors and transcriptional activators of HIV and found that the need for co-drugging is determined by the proximity of latent infections to the chromatin-regulated viral gene activation threshold at the viral promoter. Our results suggest two classes of latent viral integrations: those far from the activation threshold that benefit from co-drugging, and those close to the threshold that are efficiently activated by a single drug. Using a primary T cell model of latency, we further demonstrated that the requirement for co-drugging was donor dependent, suggesting that the host may set the level of repression of latent infections. Finally, we showed that single drug or co-drugging doses could be optimized, via repeat stimulations, to minimize unwanted side effects while maintaining robust viral activation. Our results motivate further study of patient-specific latency-reversing strategies.

20.
Integr Biol (Camb) ; 4(6): 661-71, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22555315

ABSTRACT

Higher order chromatin structure in eukaryotes can lead to differential gene expression in response to the same transcription factor; however, how transcription factor inputs integrate with quantitative features of the chromatin environment to regulate gene expression is not clear. In vitro models of HIV gene regulation, in which repressive mechanisms acting locally at an integration site keep proviruses transcriptionally silent until appropriately stimulated, provide a powerful system to study gene expression regulation in different chromatin environments. Here we quantified HIV expression as a function of activating transcription factor nuclear factor-κB RelA/p65 (RelA) levels and chromatin features at a panel of viral integration sites. Variable RelA overexpression demonstrated that the viral genomic location sets a threshold RelA level necessary to induce gene expression. However, once the induction threshold is reached, gene expression increases similarly for all integration sites. Furthermore, we found that higher induction thresholds are associated with repressive histone marks and a decreased sensitivity to nuclease digestion at the LTR promoter. Increasing chromatin accessibility via inhibition of histone deacetylation or DNA methylation lowered the induction threshold, demonstrating that chromatin accessibility sets the level of RelA required to activate gene expression. Finally, a functional relationship between gene expression, RelA level, and chromatin accessibility accurately predicted synergistic HIV activation in response to combinatorial pharmacological perturbations. Different genomic environments thus set a threshold for transcription factor activation of a key viral promoter, which may point toward biological principles that underlie selective gene expression and inform strategies for combinatorial therapies to combat latent HIV.


Subject(s)
Chromatin/genetics , Gene Expression Regulation, Viral , HIV Long Terminal Repeat , HIV/genetics , NF-kappa B/biosynthesis , Flow Cytometry , Histone Deacetylase Inhibitors/pharmacology , Humans , Jurkat Cells , Least-Squares Analysis , NF-kappa B/genetics , Promoter Regions, Genetic , Transcription Factor RelA/genetics , Transcription Factor RelA/physiology , Tumor Necrosis Factor-alpha/pharmacology , Virus Latency/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...