Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 201: 107837, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331074

ABSTRACT

Application of nanomaterials in agriculture has been extensively explored over the past decade leading to a wide ambit of nanoparticle-based agrochemicals. Metallic nanoparticles consisting of plant macro- and micro-nutrients have been used as nutritional supplements for plants through soil amendments, foliar sprays, or seed treatment. However, most of these studies emphasize monometallic nanoparticles which limit the range of usage and effectivity of such nanoparticles (NPs). Hence, we have employed a bimetallic nanoparticle (BNP) consisting of two different micro-nutrients (Cu & Fe) in rice plants to test its efficacy in terms of growth and photosynthesis. Several experiments were designed to assess growth (root-shoot length, relative water content) and photosynthetic parameters (pigment content, relative expression of rbcS, rbcL & ChlGetc.). To determine whether the treatment induced any oxidative stress or structural anomalies within the plant cells, histochemical staining, anti-oxidant enzyme activities, FTIR, and SEM micrographs were undertaken. Results indicated that foliar application of 5 mg L-1 BNP increased vigor and photosynthetic efficiency whereas 10 mg L-1 concentration induced oxidative stress to some extent. Furthermore, the BNP treatment did not perturb the structural integrity of the exposed plant parts and also did not induce any cytotoxicity. Application of BNPs in agriculture has not been explored extensively to date and this study is one of the first reports that not only documents the effectivity of Cu-Fe BNP but also critically explores the safety of its usage on rice plants making it a useful lead to design new BNPs and explore their efficacy.


Subject(s)
Metal Nanoparticles , Nanoparticles , Oryza , Seedlings , Fertilizers , Oryza/metabolism , Nanoparticles/chemistry , Photosynthesis , Metal Nanoparticles/chemistry
2.
Plant Physiol Biochem ; 194: 41-51, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371898

ABSTRACT

Microplastics are a recent entrant in the list of environmental pollutants, exhibiting great diversity owing to different sizes, surface charges, and morphologies. The present study explores the impact of varied size, surface functionalization, and concentration of polystyrene microplastics (PS MP) on plants. For this study, Cicer seedlings were exposed to two different sizes of PS (1 µm and 12 µm) with three different surface functionalization (plain, carboxylated, and aminated) and at three distinct concentrations (10, 50, and 100 mg/L). The growth and photosynthetic parameters (like pigment content, Hill activity, etc.) along with oxidative stress marker (ROS) and anti-oxidant enzyme activities (like Superoxide dismutase, Catalase, and Peroxidase) were assessed. The results incline towards the idea that with increasing concentration of PS, there was a decline in the growth of the seedlings. There was also a dose-dependent increase in oxidative stress due to the suppression of the action of antioxidant enzymes. The effect was more prominent for 12 µm PS, perhaps due to its larger size and adherence to roots resulting in mechanical damage as deduced from MDA levels in the seedlings. Besides, MP with negative surface charge was comparatively less toxic than uncharged or positively charged PS of 1 µm. Overall, it can be concluded that the impact of MP on plants does not rely on individual characteristics of the particles alone, rather it is a concerted result of various determinants like size, charge, and concentration.


Subject(s)
Cicer , Water Pollutants, Chemical , Antioxidants/metabolism , Polystyrenes/toxicity , Microplastics/toxicity , Plastics , Cicer/metabolism , Plants/metabolism , Seedlings/metabolism , Photosynthesis , Water Pollutants, Chemical/toxicity
3.
Toxicol Rep ; 9: 1953-1961, 2022.
Article in English | MEDLINE | ID: mdl-36518415

ABSTRACT

Microplastics (MPs) are perpetual contaminants that are mostly generated by human activity and are deposited in aquatic ecosystem. MPs may react differently in aquatic organisms depending on their size, surface charge, and concentration. The current investigation examined the interactions of polystyrene (PS) microplastics (of varied charges and sizes) with Scenedesmus obliquus, a unicellular phytoplankton. It is observed that 1 µm PS-MPs produced increased oxidative stress than 12 µm PS-MPs as indicated by total reactive oxygen species (ROS), superoxide and hydroxyl radical generation, and lipid peroxidation results. Additionally, decreased photosynthetic effectiveness, membrane integrity and esterase activity were also observed for the lower sized MPs. Antioxidant enzyme activities like superoxide dismutase (SOD) activity and catalase (CAT) activity correlated well with the oxidative stress generation in the cells. The effects by both the sizes of MPs were dose dependent in nature. Given the importance of a rapidly developing scientific literature on the effects of MPs in freshwater organisms, understanding the dynamics of interactions with lower-level organisms becomes very relevant.

4.
Biomed Pharmacother ; 143: 112175, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649336

ABSTRACT

Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.


Subject(s)
Ethnopharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Withania , Animals , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , COVID-19/virology , Humans , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Neuroprotective Agents/toxicity , Patient Safety , Phytochemicals/isolation & purification , Phytochemicals/toxicity , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plant Roots , Psychotropic Drugs/isolation & purification , Psychotropic Drugs/pharmacology , Psychotropic Drugs/toxicity , Risk Assessment , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Withania/chemistry , COVID-19 Drug Treatment
5.
Sci Total Environ ; 769: 144671, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33482554

ABSTRACT

Bulk fertilizer application is one of the easiest means of improving yield of crops however it comes with several environmental impediments and consumer health menace. In the wake of this situation, sustainable agricultural practices stand as pertinent agronomic tool to increase yield and ensure sufficient food supply from farm to fork. In the present study, efficacy of iron-pulsing in improving the rice yield has been elucidated. This technique involves seed treatment with different concentrations (2.5, 5 and 10 mM) of iron salts (FeCl3 and FeSO4) during germination. FeCl3 or FeSO4 was used to treat the sets and depending on the concentration of the salts, the sets were named as C2.5, C5, C10 and S2.5, S5, S10 (where C and S stands for FeCl3 and FeSO4 respectively and the numbers succeeding them denotes the concentration of salt in mM). Our investigation identified 72 h of treatment as ideal duration for iron-pulsing. At this time point, the seedling emergence attributes and activities of α-amylase and protease increased. The relative water uptake of the seeds also increased through upregulation of aquaporin expression. The treatment efficiently maintained the ROS balance with the aid of antioxidant enzymes and increased the iron content within the treated seeds. After transplantation in field, photosynthetic rate and chlorophyll content enhanced in the treated plants. Finally, the post-harvest agro-morphological traits (represented through panicle morphology, 1000 seed weight, harvest index) and yield showed significant improvement with treatment. Sets C5 and S5 showed optimum efficiency in terms of yield improvement. To our best knowledge, this study is the first report deciphering the efficacy of iron-pulsing as a safe, cost effective and promising technique to escalate the yield of rice crops without incurring an environmental cost. Thus, iron-pulsing is expected to serve as a potential tool to address global food security in years to come.


Subject(s)
Oryza , Agriculture , Germination , Iron , Seeds
6.
Plant Physiol Biochem ; 144: 207-221, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31586721

ABSTRACT

Rice is a major food crop. Due to urbanization and climate change, rice production is declining, posing a threat to the increasing food demand. For this, a modified technique of priming is used to enhance plant vigor. In the present study an endogenous rice cultivar was treated with two different iron salts for 72 h and grown for 14 days in nutrient solution. This increased the iron content of the samples which further escalated the photosynthetic efficiency and carbon assimilation in the treated plants. Photosynthesis being correlated to nitrogen assimilation, nitrogen assimilation intermediates and protein content were also elevated in treated plants. Plants showed no symptoms of stress as evident from low malondialdehyde content and increased antioxidant enzymes' activity. From this study it can be inferred that, treatment with iron during germination, helps to trigger growth by facilitating photosynthesis and nitrogen assimilation.


Subject(s)
Iron/metabolism , Nitrogen/metabolism , Oryza/metabolism , Carbon/metabolism , Gene Expression Regulation, Plant , Germination/physiology , Photosynthesis/physiology , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...