Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(33): 30437-30445, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31345025

ABSTRACT

A novel atomic layer deposition (ALD) process for nickel oxide (NiO) is developed using a recently reported diazadienyl complex, Ni(tBu2DAD)2, and ozone. A window of constant growth per cycle is found between 185 and 200 °C at 0.12 nm/cycle, among the highest reported for ALD NiO. For films deposited at 200 °C, grazing-incidence X-ray diffraction indicates a randomly oriented polycrystalline cubic NiO phase. X-ray photoelectron spectroscopy shows good agreement with bulk NiO reference spectra and no detectable impurities. Atomic force microscopy reveals low root mean square roughness of 0.6 nm for an 18 nm thick film. The refractive index of 2.36 and an electronic bandgap of 3.78 eV, as determined by variable angle spectroscopic ellipsometry, are close to reported values for bulk and thin film NiO. Finally, fabricated Ag/NiO/n-Si/In heterojunction diodes show a current-voltage asymmetry of 1.27 × 104 at 2.3 V and an ideality factor of 3.5, confirming the intrinsic p-type semiconducting behavior of transparent NiO.

2.
Langmuir ; 33(24): 5998-6004, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28534625

ABSTRACT

Uniform and conformal deposition of tin oxide thin films is important for several applications in electronics, gas sensing, and transparent conducting electrodes. Thermal atomic layer deposition (ALD) is often best suited for these applications, but its implementation requires a mechanistic understanding of the initial nucleation and subsequent ALD processes. To this end, in situ FTIR and ex situ XPS have been used to explore the ALD of tin oxide films using tributyltin ethoxide and ozone on an OH-terminated, SiO2-passivated Si(111) substrate. Direct chemisorption of tributyltin ethoxide on surface OH groups and clear evidence that subsequent ligand exchange are obtained, providing mechanistic insight. Upon ozone pulse, the butyl groups react with ozone, forming surface carbonate and formate. The subsequent tributyltin ethoxide pulse removes the carbonate and formate features with the appearance of the bands for CH stretching and bending modes of the precursor butyl ligands. This ligand-exchange behavior is repeated for subsequent cycles, as is characteristic of ALD processes, and is clearly observed for deposition temperatures of 200 and 300 °C. On the basis of the in situ vibrational data, a reaction mechanism for the ALD process of tributyltin ethoxide and ozone is presented, whereby ligands are fully eliminated. Complementary ex situ XPS depth profiles confirm that the bulk of the films is carbon-free, that is, formate and carbonate are not incorporated into the film during the deposition process, and that good-quality SnOx films are produced. Furthermore, the process was scaled up in a cross-flow reactor at 225 °C, which allowed the determination of the growth rate (0.62 Å/cycle) and confirmed a self-limiting ALD growth at 225 and 268 °C. An analysis of the temperature-dependence data reveals that growth rate increases linearly between 200 and 300 °C.

3.
J Chem Phys ; 146(5): 052813, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178839

ABSTRACT

The initial stages of cobalt metal growth by atomic layer deposition are described using the precursors bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. Ruthenium, platinum, copper, Si(100), Si-H, SiO2, and carbon-doped oxide substrates were used with a growth temperature of 180 °C. On platinum and copper, plots of thickness versus number of growth cycles were linear between 25 and 250 cycles, with growth rates of 0.98 Å/cycle. By contrast, growth on ruthenium showed a delay of up to 250 cycles before a normal growth rate was obtained. No films were observed after 25 and 50 cycles. Between 100 and 150 cycles, a rapid growth rate of ∼1.6 Å/cycle was observed, which suggests that a chemical vapor deposition-like growth occurs until the ruthenium surface is covered with ∼10 nm of cobalt metal. Atomic force microscopy showed smooth, continuous cobalt metal films on platinum after 150 cycles, with an rms surface roughness of 0.6 nm. Films grown on copper gave rms surface roughnesses of 1.1-2.4 nm after 150 cycles. Films grown on ruthenium, platinum, and copper showed resistivities of <20 µΩ cm after 250 cycles and had values close to those of the uncoated substrates at ≤150 cycles. X-ray photoelectron spectroscopy of films grown with 150 cycles on a platinum substrate showed surface oxidation of the cobalt, with cobalt metal underneath. Analogous analysis of a film grown with 150 cycles on a copper substrate showed cobalt oxide throughout the film. No film growth was observed after 1000 cycles on Si(100), Si-H, and carbon-doped oxide substrates. Growth on thermal SiO2 substrates gave ∼35 nm thick layers of cobalt(ii) formate after ≥500 cycles. Inherently selective deposition of cobalt on metallic substrates over Si(100), Si-H, and carbon-doped oxide was observed from 160 °C to 200 °C. Particle deposition occurred on carbon-doped oxide substrates at 220 °C.

5.
J Am Chem Soc ; 128(30): 9638-9, 2006 Aug 02.
Article in English | MEDLINE | ID: mdl-16866511

ABSTRACT

The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 degrees C. At 180 degrees C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of >/=2 s. The growth rate was about 1.4 A/cycle at substrate temperatures between 140 and 200 degrees C. Growth rates of 1.60 and 2.10 A/cycle were observed at 220 and 240 degrees C, respectively. In a series of films deposited at 180 degrees C, the film thicknesses varied linearly with the number of deposition cycles. Time-of-flight elastic recoil analyses demonstrated stoichiometric W2O3 films, with carbon, hydrogen, and nitrogen levels between 6.3 and 8.6, 11.9 and 14.2, and 4.6 and 5.0 at. %, respectively, at substrate temperatures of 160, 180, and 200 degrees C. The as-deposited films were amorphous. Atomic force microscopy showed root-mean-square surface roughnesses of 0.7 and 0.9 nm for films deposited at 180 and 200 degrees C, respectively. The resistivity of a film grown at 180 degrees C was 8500 microhm cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...