Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 143: 213153, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36343390

ABSTRACT

Photothermal therapy (PTT) has emerged as a fast, precisive, and cost-effective anticancer therapy protocol. Here we applied our previously designed nanomaterial (Tocophotoxil) for prospective PTT application to manage radiation- and chemo-resistant cancers in a preclinical model. A PTT dose vs. efficacy relationship was established for radioresistant breast (ZR-75-1 50Gy, 4T1 20Gy) and chemo-resistant ovarian (A2780LR) cancer cells and tumors in mice models. Compared to the sensitive cases, resistant cells treated with PTT for a shorter duration show higher endurance. However, preclinical tumor xenografts treated with optimal PTT dose show 2-3 fold higher longevity (P ≤ 0.05) of treated mice monitored by non-invasive imaging methods. Elevated ERK and AKT activation in radioresistant or only AKT activation in chemo-resistant cells were contributory to higher cell survival in sub-optimal PTT dose. A comprehensive single-cell Raman map of PTT treated ZR-75-1 cell reveals broad-spectrum macromolecular deformities, including protein damage features. Marked induction of pJNK, unfolded protein response (UPR) pathway, increased reactive oxygen species (ROS), and lipid peroxidation in PTT-treated cells disrupted the intracellular homeostasis. Analyzing cellular ultrastructure, the coexistence of swollen endoplasmic reticulum, and autophagic bodies after PTT indicate possible coordination between UPR and autophagy pathways. Therefore, this comprehensive study provides new evidence on the potential impact of PTT as a standalone therapy for ablation of failed conventional therapy-resistant cancers in vivo, the success of which is intricately linked to the PTT dose optimization. The study, for the first time, also illustrates that under PTT treatment, concerted action of novel molecular switches such as JNK activation and UPR activation plays a vital role in triggering autophagy and cancer cell death.


Subject(s)
Neoplasms , Photothermal Therapy , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt , Prospective Studies , Mice, Inbred BALB C , Neoplasms/therapy
2.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165754, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32142859

ABSTRACT

Hyperactive Insulin like growth factor-1-receptor (IGF1R) signalling is associated with development of therapy resistance in many cancers. We recently reported a pulsatile nature of IGF1R during acquirement of platinum-taxol resistance in Epithelial Ovarian Cancer (EOC) cells and a therapy induced upregulation in IGF1R expression in tumors of a small cohort of high grade serous EOC patients. Here, we report Runt-related transcription factor 1 (RUNX1) as a novel transcriptional regulator which along with another known regulator Forkhead Box O3 (FOXO3a), drives the dynamic modulation of IGF1R expression during platinum-taxol resistance development in EOC cells. RUNX1-FOXO3a cooperatively bind to IGF1R promoter and produce a transcriptional surge during onset of resistance and such co-operativity falls apart when cells attain maximal resistance resulting in decreased IGF1R expression. The intriguing descending trend in IGF1R and FOXO3a expressions is caused by a Protein Kinase B (AKT)-FOXO3a negative feedback loop exclusively present in the highly resistant cells eliciting the pulsatile behaviour of IGF1R and FOXO3a. In vivo molecular imaging revealed that RUNX1 inhibition causes significant attenuation of the IGF1R promoter activity, decreased tumorigenicity and enhanced drug sensitivity of tumors of early resistant cells. Altogether our findings delineate a dynamic interplay between several molecular regulators driving pulsatile IGF1R expression and identify a new avenue for targeting EOC through RUNX1-IGF1R axis during acquirement of chemoresistance.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Forkhead Box Protein O3/genetics , Ovarian Neoplasms/drug therapy , Receptor, IGF Type 1/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/adverse effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Paclitaxel/adverse effects , Paclitaxel/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...