Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Aging Cell ; : e14191, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751007

ABSTRACT

Nonagenarians and centenarians serve as successful examples of aging and extended longevity, showcasing robust regulation of biological mechanisms and homeostasis. Given that human longevity is a complex field of study that navigates molecular and biological mechanisms influencing aging, we hypothesized that microRNAs, a class of small noncoding RNAs implicated in regulating gene expression at the post-transcriptional level, are differentially regulated in the circulatory system of young, middle-aged, and nonagenarian individuals. We sequenced circulating microRNAs in Okinawan males and females <40, 50-80, and >90 years of age accounting for FOXO3 genetic variations of single nucleotide polymorphism (SNP) rs2802292 (TT - common vs. GT - longevity) and validated the findings through RT-qPCR. We report five microRNAs exclusively upregulated in both male and female nonagenarians with the longevity genotype, play predictive functional roles in TGF-ß, FoxO, AMPK, Pi3K-Akt, and MAPK signaling pathways. Our findings suggest that these microRNAs upregulated in nonagenarians may provide novel insight into enhanced lifespan and health span. This discovery warrants further exploration into their roles in human aging and longevity.

2.
Proc Natl Acad Sci U S A ; 120(14): e2213207120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36976763

ABSTRACT

Cellular senescence, a hallmark of aging, has been implicated in the pathogenesis of many major age-related disorders, including neurodegeneration, atherosclerosis, and metabolic disease. Therefore, investigating novel methods to reduce or delay the accumulation of senescent cells during aging may attenuate age-related pathologies. microRNA-449a-5p (miR-449a) is a small, noncoding RNA down-regulated with age in normal mice but maintained in long-living growth hormone (GH)-deficient Ames Dwarf (df/df) mice. We found increased fibroadipogenic precursor cells, adipose-derived stem cells, and miR-449a levels in visceral adipose tissue of long-living df/df mice. Gene target analysis and our functional study with miR-449a-5p have revealed its potential as a serotherapeutic. Here, we test the hypothesis that miR-449a reduces cellular senescence by targeting senescence-associated genes induced in response to strong mitogenic signals and other damaging stimuli. We demonstrated that GH downregulates miR-449a expression and accelerates senescence while miR-449a upregulation using mimetics reduces senescence, primarily through targeted reduction of p16Ink4a, p21Cip1, and the PI3K-mTOR signaling pathway. Our results demonstrate that miR-449a is important in modulating key signaling pathways that control cellular senescence and the progression of age-related pathologies.


Subject(s)
MicroRNAs , Animals , Mice , Cellular Senescence/genetics , Growth Hormone/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
3.
PLoS One ; 17(6): e0269554, 2022.
Article in English | MEDLINE | ID: mdl-35687572

ABSTRACT

INTRODUCTION: Cancer consistently remains one of the top causes of death in the United States every year, with many cancer deaths preventable if detected early. Circulating serum miRNAs are a promising, minimally invasive supplement or even an alternative to many current screening procedures. Many studies have shown that different serum miRNAs can discriminate healthy individuals from those with certain types of cancer. Although many of those miRNAs are often reported to be significant in one cancer type, they are also altered in other cancer types. Currently, very few studies have investigated serum miRNA biomarkers for multiple cancer types for general cancer screening purposes. METHOD: To identify serum miRNAs that would be useful in screening multiple types of cancers, microarray cancer datasets were curated, yielding 13 different types of cancer with a total of 3352 cancer samples and 2809 non-cancer samples. The samples were divided into training and validation sets. One hundred random forest models were built using the training set to select candidate miRNAs. The selected miRNAs were then used in the validation set to see how well they differentiate cancer from normal samples in an independent dataset. Furthermore, the interactions between these miRNAs and their target mRNAs were investigated. RESULT: The random forest models achieved an average of 97% accuracy in the training set with 95% bootstrap confidence interval of 0.9544 to 0.9778. The selected miRNAs were hsa-miR-663a, hsa-miR-6802-5p, hsa-miR-6784-5p, hsa-miR-3184-5p, and hsa-miR-8073. Each miRNA exhibited high area under the curve (AUC) value using receiver operating characteristic analysis. Moreover, the combination of four out of five miRNAs achieved the highest AUC value of 0.9815 with high sensitivity of 0.9773, indicating that these miRNAs have a high potential for cancer screening. miRNA-mRNA and protein-protein interaction analysis provided insights into how these miRNAs play a role in cancer.


Subject(s)
Circulating MicroRNA , MicroRNAs , Neoplasms , Biomarkers , Humans , MicroRNAs/genetics , Neoplasms/diagnosis , Neoplasms/genetics , RNA, Messenger/genetics , ROC Curve
4.
Biology (Basel) ; 11(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35453708

ABSTRACT

Crohn's disease (CD) and rheumatoid arthritis (RA) are immune mediated inflammatory diseases. Several studies indicate a role for microRNAs (miRNAs) in the pathogenesis of a variety of autoimmune diseases, including CD and RA. Our study's goal was to investigate circulating miRNAs in CD and RA patients to identify potential new biomarkers for early detection and personalized therapeutic approaches for autoimmune diseases. For this study, subjects with CD (n = 7), RA (n = 8) and healthy controls (n = 7) were recruited, and plasma was collected for miRNA sequencing. Comparison of the expression patterns of miRNAs between CD and healthy patients identified 99 differentially expressed miRNAs. Out of these miRNAs, 4 were down regulated, while 95 were up regulated. Comparison of miRNAs between RA and healthy patients identified 57 differentially expressed miRNAs. Out of those, 12 were down regulated, while 45 were up regulated. For all the miRNAs down regulated in CD and RA patients, 420 GO terms for biological processes were similarly regulated between both groups. Therefore, the identification of new plasma miRNAs allows the emergence of new biomarkers that can assist in the diagnosis and treatment of CD and RA.

5.
Med Hypotheses ; 157: 110704, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34688214

ABSTRACT

Cancers arise from single transformed cells from virtually every organ of the body, divide in a relatively uncontrolled manner, and metastasize widely. A search for a "magic bullet" to precisely diagnose, characterize, and ultimately treat cancer has largely failed because cancer cells do not differ significantly from their organ-specific cells of origin. Instead of searching for genomic, epigenetic, transcriptional, and translational differences between cancers and their cells of origin, we should paradoxically focus on what cancer cells have in common with their untransformed cells of origin. This redirected search will lead to improved diagnostic and therapeutic strategies where therapeutic index considerations and drug-limiting toxicities can largely be circumvented. We cite three cancer examples that illustrate this paradigm-shifting strategy: pseudomyxoma peritonei (PP), metastasis of unknown origin (cancers of unknown primary) (MUO), and cancers that arise from potentially dispensable organs (CAD). In each of these examples, the cell of cancer origin still provides the most reliable road map to its diagnosis, prognosis (biology), and therapy.


Subject(s)
Peritoneal Neoplasms , Pseudomyxoma Peritonei , Genomics , Humans , Prognosis
6.
J Gerontol A Biol Sci Med Sci ; 76(9): 1561-1570, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34387333

ABSTRACT

The Ames dwarf (df/df) mouse is a well-established model for delayed aging. MicroRNAs (miRNAs), the most studied small noncoding RNAs (sncRNAs), may regulate ovarian aging to maintain a younger ovarian phenotype in df/df mice. In this study, we profile other types of ovarian sncRNAs, PIWI-interacting RNAs (piRNAs) and piRNA-like RNAs (piLRNAs), in young and aged df/df and normal mice. Half of the piRNAs derive from transfer RNA fragments (tRF-piRNAs). Aging and dwarfism alter the ovarian expression of these novel sncRNAs. Specific tRF-piRNAs that increased with age might target and decrease the expression of the breast cancer antiestrogen resistance protein 3 (BCAR3) gene in the ovaries of old df/df mice. A set of piLRNAs that decreased with age and map to D10Wsu102e mRNA may have trans-regulatory functions. Other piLRNAs that decreased with age potentially target and may de-repress transposable elements, leading to a beneficial impact on ovarian aging in df/df mice. These results identify unique responses in ovarian tissues with regard to aging and dwarfism. Overall, our findings highlight the complexity of the aging effects on gene expression and suggest that, in addition to miRNAs, piRNAs, piLRNAs, tRF-piRNAs, and their potential targets can be central players in the maintenance of a younger ovarian phenotype in df/df mice.


Subject(s)
Aging/genetics , Longevity/genetics , Ovary/metabolism , RNA, Small Interfering/metabolism , RNA, Small Untranslated/metabolism , Animals , Dwarfism, Pituitary/genetics , Female , Mice , Mice, Knockout , Oogenesis/genetics , Phenotype
7.
Aging Cell ; 20(7): e13420, 2021 07.
Article in English | MEDLINE | ID: mdl-34118183

ABSTRACT

Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH-deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa-miR-31, hsa-miR-146b, hsa-miR-30e, hsa-miR-100, hsa-miR-181b-2, hsa-miR-195, and hsa-miR-181b-1, which target the FoxO and mTOR pathways. Intriguingly, miR-181b-5p, miR-361-3p, miR-144-3p, and miR-155-5p were commonly regulated in the serum of humans and GH-deficient mice. In vitro assays confirmed target genes for the main up-regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age-related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.


Subject(s)
Dwarfism, Pituitary/genetics , MicroRNAs/genetics , Adult , Animals , Female , Humans , Male , Mice , Middle Aged
8.
Sci Rep ; 11(1): 13323, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172784

ABSTRACT

Lung cancer is one of the deadliest cancers in the world. Two of the most common subtypes, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), have drastically different biological signatures, yet they are often treated similarly and classified together as non-small cell lung cancer (NSCLC). LUAD and LUSC biomarkers are scarce, and their distinct biological mechanisms have yet to be elucidated. To detect biologically relevant markers, many studies have attempted to improve traditional machine learning algorithms or develop novel algorithms for biomarker discovery. However, few have used overlapping machine learning or feature selection methods for cancer classification, biomarker identification, or gene expression analysis. This study proposes to use overlapping traditional feature selection or feature reduction techniques for cancer classification and biomarker discovery. The genes selected by the overlapping method were then verified using random forest. The classification statistics of the overlapping method were compared to those of the traditional feature selection methods. The identified biomarkers were validated in an external dataset using AUC and ROC analysis. Gene expression analysis was then performed to further investigate biological differences between LUAD and LUSC. Overall, our method achieved classification results comparable to, if not better than, the traditional algorithms. It also identified multiple known biomarkers, and five potentially novel biomarkers with high discriminating values between LUAD and LUSC. Many of the biomarkers also exhibit significant prognostic potential, particularly in LUAD. Our study also unraveled distinct biological pathways between LUAD and LUSC.


Subject(s)
Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Biomarkers/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Adenocarcinoma of Lung/genetics , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Genetic Techniques , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Male , Prognosis
9.
Front Oncol ; 9: 959, 2019.
Article in English | MEDLINE | ID: mdl-31616639

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer and, as indicated by The Oral Cancer Foundation, kills at an alarming rate of roughly one person per hour. With this study, we aimed at better understanding disease mechanisms and identifying minimally invasive disease biomarkers by profiling novel small non-coding RNAs (specifically, tRNA halves and YRNA fragments) in both serum and tumor tissue from humans. Small RNA-Sequencing identified multiple 5' tRNA halves and 5' YRNA fragments that displayed significant differential expression levels in circulation and/or tumor tissue, as compared to control counterparts. In addition, by implementing a modification of weighted gene coexpression network analysis, we identified an upregulated genetic module comprised of 5' tRNA halves and miRNAs (miRNAs were described in previous study using the same samples) with significant association with the cancer trait. By consequently implementing miRNA-overtargeting network analysis, the biological function of the module (and by "guilt by association," the function of the 5' tRNA-Val-CAC-2-1 half) was found to involve the transcriptional targeting of specific genes involved in the negative regulation of the G1/S transition of the mitotic cell cycle. These findings suggest that 5' tRNA-Val-CAC-2-1 half (reduced in serum of OSCC patients and elevated in the tumor tissue) could potentially serve as an OSCC circulating biomarker and/or target for novel anticancer therapies. To our knowledge, this is the first time that the specific molecular function of a 5'-tRNA half is specifically pinpointed in OSCC.

10.
Biomark Cancer ; 10: 1179299X18759545, 2018.
Article in English | MEDLINE | ID: mdl-29497340

ABSTRACT

Extracellular RNAs are gaining clinical interest as biofluid-based noninvasive markers for diseases, especially cancer. In particular, derivatives of transfer RNA (tRNA) are emerging as a new class of small-noncoding RNAs with high biomarker potential. We and others previously reported alterations in serum levels of specific tRNA halves in disease states including cancer. Here, we explored seminal fluid for tRNA halves as potential markers of prostate cancer. We found that 5' tRNA halves are abundant in seminal fluid and are elevated in prostate cancer relative to noncancer patients. Importantly, most of these tRNA halves are also detectable in prostatic tissues, and a subset were increased in malignant relative to adjacent normal tissue. These findings emphasize the potential of 5' tRNA halves as noninvasive markers for prostate cancer screening and diagnosis and provide leads for future work to elucidate a putative role of the 5' tRNA halves in carcinogenesis.

11.
Biogerontology ; 19(2): 171-184, 2018 04.
Article in English | MEDLINE | ID: mdl-29335816

ABSTRACT

"Organ reserve" refers to the ability of an organ to successfully return to its original physiological state following repeated episodes of stress. Clinical evidence shows that organ reserve correlates with the ability of older adults to cope with an added workload or stress, suggesting a role in the process of aging. Although organ reserve is well documented clinically, it is not clearly defined at the molecular level. Interestingly, several metabolic pathways exhibit excess metabolic capacities (e.g., bioenergetics pathway, antioxidants system, plasticity). These pathways comprise molecular components that have an excess of quantity and/or activity than that required for basic physiological demand in vivo (e.g., mitochondrial complex IV or glycolytic enzymes). We propose that the excess in mtDNA copy number and tandem DNA repeats of telomeres are additional examples of intrinsically embedded structural components that could comprise excess capacity. These excess capacities may grant intermediary metabolism the ability to instantly cope with, or manage, added workload or stress. Therefore, excess metabolic capacities could be viewed as an innate mechanism of adaptability that substantiates organ reserve and contributes to the cellular defense systems. If metabolic excess capacities or organ reserves are impaired or exhausted, the ability of the cell to cope with stress is reduced. Under these circumstances cell senescence, transformation, or death occurs. In this review, we discuss excess metabolic and structural capacities as integrated metabolic pathways in relation to organ reserve and cellular aging.


Subject(s)
Aging/physiology , Adaptation, Physiological , Aging/genetics , Aging/metabolism , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/metabolism , Energy Metabolism , Glycolysis , Humans , Models, Biological , Neurons/metabolism , Pentose Phosphate Pathway , Telomere/genetics , Tissue Survival/physiology
12.
Aging Cell ; 16(5): 1200-1203, 2017 10.
Article in English | MEDLINE | ID: mdl-28677323

ABSTRACT

Caloric restriction (CR) is one of the most robust interventions shown to delay aging in diverse species, including rhesus monkeys (Macaca mulatta). Identification of factors involved in CR brings a promise of translatability to human health and aging. Here, we show that CR induced a profound change in abundance of circulating microRNAs (miRNAs) linked to growth and insulin signaling pathway, suggesting that miRNAs are involved in CR's mechanisms of action in primates. Deep sequencing of plasma RNA extracts enriched for short species revealed a total of 243 unique species of miRNAs including 47 novel species. Approximately 70% of the plasma miRNAs detected were conserved between rhesus monkeys and humans. CR induced or repressed 24 known and 10 novel miRNA species. Regression analysis revealed correlations between bodyweight, adiposity, and insulin sensitivity for 10 of the CR-regulated known miRNAs. Sequence alignment and target identification for these 10 miRNAs identify a role in signaling downstream of the insulin receptor. The highly abundant miR-125a-5p correlated positively with adiposity and negatively with insulin sensitivity and was negatively regulated by CR. Putative target pathways of CR-associated miRNAs were highly enriched for growth and insulin signaling that have previously been implicated in delayed aging. Clustering analysis further pointed to CR-induced miRNA regulation of ribosomal, mitochondrial, and spliceosomal pathways. These data are consistent with a model where CR recruits miRNA-based homeostatic mechanisms to coordinate a program of delayed aging.


Subject(s)
Aging/genetics , Caloric Restriction/methods , Gene Expression Regulation, Developmental , Insulin Resistance/genetics , MicroRNAs/genetics , Adiposity , Aging/metabolism , Animals , Conserved Sequence , Humans , Macaca mulatta , Male , MicroRNAs/blood , MicroRNAs/classification , Mitochondria/genetics , Mitochondria/metabolism , Principal Component Analysis , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Signal Transduction , Spliceosomes/genetics , Spliceosomes/metabolism
13.
Genomics Insights ; 9: 29-39, 2016.
Article in English | MEDLINE | ID: mdl-27042094

ABSTRACT

In mammals, extracellular miRNAs circulate in biofluids as stable entities that are secreted by normal and diseased tissues, and can enter cells and regulate gene expression. Drosophila melanogaster is a proven system for the study of human diseases. They have an open circulatory system in which hemolymph (HL) circulates in direct contact with all internal organs, in a manner analogous to vertebrate blood plasma. Here, we show using deep sequencing that Drosophila HL contains RNase-resistant circulating miRNAs (HL-miRNAs). Limited subsets of body tissue miRNAs (BT-miRNAs) accumulated in HL, suggesting that they may be specifically released from cells or particularly stable in HL. Alternatively, they might arise from specific cells, such as hemocytes, that are in intimate contact with HL. Young and old flies accumulated unique populations of HL-miRNAs, suggesting that their accumulation is responsive to the physiological status of the fly. These HL-miRNAs in flies may function similar to the miRNAs circulating in mammalian biofluids. The discovery of these HL-miRNAs will provide a new venue for health and disease-related research in Drosophila.

14.
Redox Biol ; 6: 426-435, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26386875

ABSTRACT

Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity.


Subject(s)
Cellular Senescence/drug effects , Energy Metabolism/drug effects , Methylene Blue/pharmacology , Adenylate Kinase/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Cell Cycle/drug effects , Cell Line , Drug Evaluation, Preclinical , Electron Transport Complex IV/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , NAD/metabolism , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphorylation , Protein Processing, Post-Translational , Ribonucleotides/pharmacology , Telomere Homeostasis/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
15.
Mol Cell Biol ; 35(20): 3471-90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26240283

ABSTRACT

The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/ß-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/ß-catenin/TCF4 and AP-1 pathways.


Subject(s)
Colorectal Neoplasms/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 4/physiology , Transcription Factor AP-1/metabolism , Animals , Base Sequence , Binding, Competitive , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Consensus Sequence , Gene Expression Regulation, Neoplastic , Gene Ontology , HCT116 Cells , Humans , Male , Mice, Nude , Neoplasm Transplantation , Polymorphism, Single Nucleotide , Protein Binding , Protein Isoforms/physiology , Transcriptome , Tumor Burden
16.
Aging Cell ; 14(6): 1055-66, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26176567

ABSTRACT

Recent evidence demonstrates that serum levels of specific miRNAs significantly change with age. The ability of circulating sncRNAs to act as signaling molecules and regulate a broad spectrum of cellular functions implicates them as key players in the aging process. To discover circulating sncRNAs that impact aging in the long-lived Ames dwarf mice, we conducted deep sequencing of small RNAs extracted from serum of young and old mice. Our analysis showed genotype-specific changes in the circulating levels of 21 miRNAs during aging [genotype-by-age interaction (GbA)]. Genotype-by-age miRNAs showed four distinct expression patterns and significant overtargeting of transcripts involved in age-related processes. Functional enrichment analysis of putative and validated miRNA targets highlighted cellular processes such as tumor suppression, anti-inflammatory response, and modulation of Wnt, insulin, mTOR, and MAPK signaling pathways, among others. The comparative analysis of circulating GbA miRNAs in Ames mice with circulating miRNAs modulated by calorie restriction (CR) in another long-lived mouse suggests CR-like and CR-independent mechanisms contributing to longevity in the Ames mouse. In conclusion, we showed for the first time a signature of circulating miRNAs modulated by age in the long-lived Ames mouse.


Subject(s)
Aging/genetics , Dwarfism, Pituitary/genetics , Longevity/genetics , MicroRNAs/blood , Animals , Base Sequence , Caloric Restriction , Female , Genotype , High-Throughput Nucleotide Sequencing , Insulin/metabolism , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Sequence Analysis, DNA , TOR Serine-Threonine Kinases/metabolism , Wnt Proteins/metabolism
17.
PLoS One ; 10(7): e0132672, 2015.
Article in English | MEDLINE | ID: mdl-26200659

ABSTRACT

The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.


Subject(s)
Diabetes Mellitus/etiology , Fructose/adverse effects , Liver/drug effects , Obesity/etiology , Plant Oils/adverse effects , Soybean Oil/adverse effects , Animals , Coconut Oil , Cytochrome P-450 Enzyme System/genetics , Diabetes Mellitus/epidemiology , Diabetes Mellitus/genetics , Dietary Fats/adverse effects , Gene Expression Regulation/drug effects , Insulin Resistance , Liver/metabolism , Liver/pathology , Male , Mice , Obesity/epidemiology , Obesity/genetics
18.
Oncotarget ; 6(22): 19246-63, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26057471

ABSTRACT

The Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common human cancer, causing 350,000 individuals die worldwide each year. The overall prognosis in HNSCC patients has not significantly changed for the last decade. Complete understanding of the molecular mechanisms in HNSCC carcinogenesis could allow an earlier diagnosis and the use of more specific and effective therapies. In the present study we used deep sequencing to characterize small non-coding RNAs (sncRNAs) in serum from HNSCC patients and healthy donors. We identified, for the first time, a multi-marker signature of 3 major classes of circulating sncRNAs in HNSCC, revealing the presence of circulating novel and known miRNAs, and tRNA- and YRNA-derived small RNAs that were significantly deregulated in the sera of HNSCC patients compared to healthy controls. By implementing a triple-filtering approach we identified a subset of highly biologically relevant miRNA-mRNA interactions and we demonstrated that the same genes/pathways affected by somatic mutations in cancer are affected by changes in the abundance of miRNAs. Therefore, one important conclusion from our work is that during cancer development, there seems to be a convergence of oncogenic processes driven by somatic mutations and/or miRNA regulation affecting key cellular pathways.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms/genetics , MicroRNAs/blood , RNA, Untranslated/blood , Aged , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/pathology , Female , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/pathology , Humans , Male , MicroRNAs/genetics , Middle Aged , Mouth Neoplasms/blood , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Neoplasm Staging , Prognosis , RNA, Untranslated/genetics , Squamous Cell Carcinoma of Head and Neck
19.
BMC Genomics ; 16: 462, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26076733

ABSTRACT

BACKGROUND: Piwi-interacting RNAs (piRNAs) are a class of small RNAs; distinct types of piRNAs are expressed in the mammalian testis at different stages of development. The function of piRNAs expressed in the adult testis is not well established. We conducted a detailed characterization of piRNAs aligning at or near the 3' UTRs of protein-coding genes in a deep dataset of small RNAs from adult mouse testis. RESULTS: We identified 2710 piRNA clusters associated with 3' UTRs, including 1600 that overlapped genes not previously associated with piRNAs. 35% of the clusters extend beyond the annotated transcript; we find that these clusters correspond to, and are likely derived from, novel polyadenylated mRNA isoforms that contain previously unannotated extended 3'UTRs. Extended 3' UTRs, and small RNAs derived from them, are also present in somatic tissues; a subset of these somatic 3'UTR small RNA clusters are absent in mice lacking MIWI2, indicating a role for MIWI2 in the metabolism of somatic small RNAs. CONCLUSIONS: The finding that piRNAs are processed from extended 3' UTRs suggests a role for piRNAs in the remodeling of 3' UTRs. The presence of both clusters and extended 3'UTRs in somatic cells, with evidence for involvement of MIWI2, indicates that this pathway is more broadly distributed than currently appreciated.


Subject(s)
3' Untranslated Regions/genetics , RNA, Small Interfering/genetics , Animals , Argonaute Proteins/genetics , Male , Mice , RNA, Messenger/genetics , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...