Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38446298

ABSTRACT

In this article, the multifunctional behavior of novel, efficient, and cost-effective humic acid-coated nanoceria (HA@CeO2 NPs) was utilized for the sorptive removal of U(VI), Cr(VI), and F- ions at different conditions. The production cost of HA@CeO2 was $19.28/kg and was well characterized by DLS, FESEM, HRTEM, FTIR, XRD, XPS, and TGA. Batch adsorption study for U(VI) (at pH ~ 8), Cr(VI) (at pH ~ 1), and F- (at pH ~ 2) revealed that the maximum percentage of sorption was > 80% for all the cases. From the contact time experiment, it was concluded that pseudo-second-order kinetics followed, and hence, the process should be a chemisorption. The adsorption study revealed that U(VI) and Cr(VI) followed the Freundlich isotherm, whereas F- followed the Langmuir isotherm. Maximum adsorption capacity for F- was 96 mg g-1. Experiments in real water suggest that adsorption is decreased in Kaljani River water (~ 12% for Cr(VI) and ~ 11% for F-) and Kochbihar Lake water (25.04% for Cr(VI) and 20.5% for F-) because of competing ion effect. Mechanism was well established by the kinetic study as well as XPS analysis. Because of high adsorption efficiency, HA@CeO2 NPs can be used for the removal of other harmful water contaminants to make healthy aquatic life as well as purified drinking water.

2.
Environ Sci Pollut Res Int ; 30(56): 119491-119505, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37930573

ABSTRACT

A 3D flower-shaped bimetallic nanocomposite zirconium magnesium oxide (ZMO) was prepared first time by the controlled solution combustion method using triethanolamine (TEA) as a fuel and chelating agent. The composite material was used to remove excess fluoride via adsorption. The thermal stability of the adsorbent was characterized by thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) were used to characterize the adsorbent. The surface charge of the nano adsorbent was determined by Zeta Sizer. The surface area and pore volume of the adsorbent were determined by Brunauer-Emmett-Teller (BET) isotherm and Barrett-Joyner-Halenda (BJH) methods. The adsorption behavior of fluoride was studied systematically varying the pH, contact time, adsorbent dose, and initial fluoride concentration. The adsorption followed the Langmuir isotherm model with a maximum adsorption capacity of 42.14 mg/g. The pseudo-second-order kinetic model was confirmed by the adsorption study. The maximum adsorption efficiency was in the 6-10 pH range. The reaction mechanism was mainly based on ion exchange between hydroxy and fluoride ions which was proven by X-ray photoelectron spectroscopy (XPS). Real water tests indicated that ZMO could be used as a potential defluoridation agent for fluoride containing groundwater treatment.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Fluorides/chemistry , Magnesium Oxide , Magnesium , Zirconium/analysis , Adsorption , Nanocomposites/chemistry , Kinetics , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 30(59): 124106-124122, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996580

ABSTRACT

Spherically shaped trimetallic MnAl2O4 (MAO) nanoadsorbent was prepared in an one-pot synthesis process for the removal of excess fluoride from water. The adsorbent was characterized by thermogravimetric analysis (TGA), X-ray diffraction study (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), etc. The adsorption property for fluoride on the MAO was analyzed by batch experiments varying the adsorbent dose, pH, contact time, and initial fluoride concentration. The results showed that the fluoride uptake behavior of the samples could precisely be fitted by the Freundlich model, and the maximum adsorption capacity was estimated to be 39.21 mg/g at room temperature. The pseudo-second-order models accurately described the adsorption kinetics data. The regenerated sample showed excellent reusability along with high removal capacity on real water sample also. The underlying fluoride adsorption mechanism via ion-exchange and electrostatic interaction was established from X-ray photoelectron spectroscopy (XPS) and zeta potential studies. The sample showed excellent luminescence with blue emission with a band gap of 2.6 eV. The materials also showed good elastic behavior exhibiting the Poisson's ratio (σ) 0.32 and excellent latent figure print detection capacity distinguishing the clearly the ridge and furrow regions under UV light. The magnetic behavior was also found to be in long range with antiferromagnetic characteristics.


Subject(s)
Fluorides , Water Pollutants, Chemical , Fluorides/chemistry , Water , Microscopy, Electron, Scanning , Adsorption , Kinetics , Magnetic Phenomena , Monoamine Oxidase , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Spectroscopy, Fourier Transform Infrared
4.
Article in English | MEDLINE | ID: mdl-37812343

ABSTRACT

Waterbodies are day-by-day polluted by the various colored micropollutants, e.g., azo dyes enriched (carcinogenic, non-biodegradable) colored wastewater from textile industries. Water pollution has become a serious global issue as ~ 25% of health diseases are prompted by pollution as reported by WHO. Around 1 billion people will face water scarcity by 2025 and this water crisis is also a prime focus to the UNs' sustainable development goal 6 (SDG6: clean water and sanitation). To prevent the water pollution caused by micropollutants, a mesoporous, 3D rod-like nano-oxide Ti/Al/Cr (abbreviated as TAC) has been synthesized via the solvothermal method. TAC degraded all classes of azo dyes (mono, di, tri, etc.) with > 90% efficiency under renewable energy source solar irradiation within the pH range 2-11. The detailed study was done on the photodegradation of carcinogenic di-azo dye Congo red (CR) which is banned in many countries. TAC showed 90.64 ± 2% degradation efficiency for CR at pH 7. The proposed photodegradation mechanism of CR was confirmed by the high-resolution liquid chromatography-mass spectroscopy (HRLC-MS) analysis obeying the Pirkanniemi path. The photodegradation obeyed the pseudo-1st-order kinetics and was reusable up to successive 5 cycles which can be an efficient tool to meet the UNs' SDG:6.

6.
Dalton Trans ; 52(26): 8850-8856, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37338097

ABSTRACT

A structurally characterized porous Ag(I)-molecular cage AgMOC and a Cu(II)-coordination polymer CuCP with a pre-synthesized ligand 1,3-bis(((E)-2-methoxybenzylidene)amino)propan-2-ol and its parental amine with thiocyanate are reported to harness electrical mobility-driven hydrogen evolution activity. Porosity-induced electrically conductive AgMOC emerges as a better electrocatalyst with a Tafel slope of 104 mV per decade over Cu(II)-polymer's slope of 128 mV per decade. The electrochemical stability and durability of the designed electrocatalysts in harnessing the HER activity are also examined under experimental conditions.

7.
Article in English | MEDLINE | ID: mdl-36959399

ABSTRACT

The majority of people on the earth bank largely on groundwater to quench their thirst. In the era of rapid population growth, the over-exploitation of groundwater gives rise to water scarcity, and people find themselves in distress to manage safe drinking water. In this backdrop, the present study is carried out in the terrain of Pre-Cambrian igneous and high- to low-graded metamorphic rocks, to assess the groundwater potential zones (GWPZs) and evaluation of groundwater quality. The map of GWPZ is produced employing the multi-criteria decision-making model and geospatial technology. It unveils that around 29% area of the watershed enjoys good GWPZ, whereas around 43% area experiences low GWPZ. The overall accuracy of the simulated model is 92%. The water quality index indicates that 68% of water samples belong to excellent to good water quality. A significant proportion of water samples (24%) are found to be unsuitable for drinking, which may be due to groundwater contamination by the process of leaching of mineral-rich weathered rocks. The presence of fluoride (F-) beyond the maximum permissible limit (1.5 mg L-1) of WHO is recorded among 18% samples of the watershed, where 24,963 souls including 3457 children aged between 0 and 6 years lived and might have ingested F- through drinking water. Hence, the health risk of those people is quite high. Children are at a more non-carcinogenic health risk of F- than adults. The study also confirms no statistically significant difference (p ˃ 0.05) is observed between low and high GWPZ with respect to groundwater quality. The study recommends adopting a sustainable outlook to explore GWPZ, and an assessment of drinking water quality must be done before drinking.

8.
Environ Res ; 217: 114862, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36410464

ABSTRACT

Phase pure, trigonal, mesoporous Fe/Al/La trimetallic nano-oxide (abbreviated as FAL) was synthesized using energy efficient chemical route with bandgap 1.97 eV and SBET = 50.02 m2/g and an average pore size of 8.95 nm for photodegradation of azo (di and tri) and thiazine class of dyes successfully. The valence band and conduction band potentials were calculated using the Mott-Schottky plot. The highest photodegradation efficiency was 93.85 ± 2% for reactive black 5 (RB5) at pH 7 under solar irradiation. The phase formation of FAL was confirmed by PXRD, TEM, and HRTEM analyses. The other characterizations include FESEM, Raman, EPR, UV, HPLC, LC-MS, etc. The presence of the metal centers and their corresponding oxidation states were confirmed by the SAEDS, elemental mapping, and XPS analyses respectively. FAL was also able to photodegrade direct blue 71 (DB71) and methylene blue (MB) under the same condition at different pH efficiently (pH 2-11). The photodegradation obeyed the pseudo-1st-order kinetics and was reusable up to 5 successive cycles. This study may be an efficient tool to meet UNs' SDG:6.


Subject(s)
Coloring Agents , Water , Photolysis , Oxides , Hydrogen-Ion Concentration
9.
Environ Sci Pollut Res Int ; 30(34): 81386-81402, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35997883

ABSTRACT

A novel porous spherical-shaped magnesium zinc binary oxide (MZO) was successfully prepared for the first time using a chemical process for fluoride removal and photocatalytic methylene blue (MB) and Congo red (CR) dye degradation. XRD, FESEM, and TEM were studied for phase formation, topographic, crystallographic, and detailed structural information. The surface charge and optical properties of the adsorbent were studied by zeta potential and photoluminescence spectra. The synthesized nano-adsorbents showed high fluoride removal capacity (43.10 mg/g) and photocatalytic activity with a degradation efficiency of 97.83% and 78.40% for MB and CR, respectively. The adsorption was strongly pH-dependent and worked well in the range 6-9. The kinetic studies were performed for both fluoride removal and dye degradation and were found to follow pseudo-second-order and first-order rate law, respectively. The samples were found to be extremely reusable and selective for fluoride removal in presence of co-ions such as NO3-, SO42-, and Cl-. The basic fluoride adsorption process of the samples can be related to ion exchange and electrostatic interactions, according to XPS and FTIR data. The detailed mechanistic study of photocatalytic dye degradation showed that the reaction occurred via OH radicals. Thus, MZO could be considered an effective and quick adsorbent for water purification in fluoride-containing groundwater and industrial dye wastewater.


Subject(s)
Congo Red , Zinc Oxide , Fluorides , Methylene Blue/chemistry , Magnesium , Magnesium Oxide , Zinc , Kinetics , Porosity , Adsorption
10.
Toxicology ; 477: 153274, 2022 07.
Article in English | MEDLINE | ID: mdl-35905945

ABSTRACT

In this growing age of population,agriculture plays a significant role by providing food and employment to millions of people. But to meet the growing need of food day by day the demand of fast and quality plant production becomes a must. Fertilization is one of such activities which are people accustomed to do for this purpose from a very long time. But the excessive uses of chemical fertilizers are showing negative influence on the environmental and public health. The paper mainly focuses on how the excessive use of chemical fertilizers are affecting the soil health as well as the water bodies by accumulating heavy metals (HMs) and other chemical elements present in them and the possible remediation measures.In adequate levels, all heavy metals are hazardous. However, some of them e.g., arsenic (As), lead (Pb) and Cadmium (Cd) are of particular relevance due to their environmental concentrations. The paper also provides a comprehensive discussion of the sources, uses, toxicity, and remediation of these particular HMs.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Arsenic/toxicity , Cadmium/toxicity , Fertilization , Fertilizers/analysis , Humans , Lead/toxicity , Metals, Heavy/toxicity , Soil Pollutants/analysis , Soil Pollutants/toxicity
11.
J Environ Sci (China) ; 88: 301-315, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31862071

ABSTRACT

An adaptable, energy efficient chemical process is employed to synthesize Cu2+ engrafted MgAl2O4 nanoparticles (Mg1-xCuxAl2O4, x=0, 0.1, 0.3, 0.5 abbreviated as MCA0, MCA1, MCA3, and MCA5 respectively), using chelating ligand and the calcination temperature was determined by the thermogravimetric analysis of the precursor mass. They acted as good fluoride adsorbent in the presence of co-ions, different pH (2-11) via chemisorption revealed from Fourier-transform infrared spectroscopy (FTIR) and photodegraded Methylene Blue (MB). The satisfactory results were for MCA1 (specific surface area 25.05m2/g) with 97% fluoride removal at pH7.0 for the 10mg/L initial fluoride concentration for 1.5g/L adsorbent dose with 45min contact time obeying the Langmuir isotherm model with negative thermodynamic parameters and 4mmol of MCA3 with 98.51% photodegradation for 10-5mol/LMB solution obeying pseudo-second-order and pseudo-first-order kinetics respectively. The proposed photodegradation mechanism of MB was established by the FTIR and high-performance liquid chromatography (HPLC) analysis. The nanoparticles are cubic, estimated through X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. The band gap energies, grain size, and the effective working pH were estimated by diffuse reflectance spectra (DRS), scanning electron microscope (SEM), and zero-point potential analysis respectively. A soil candle with MCA1 also fabricated for the household purpose and tested with some fluorinated field samples. The MCA3 was able to enhance the latent fingerprint on smooth surfaces.


Subject(s)
Copper/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Fluorides , Kinetics , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
12.
ACS Omega ; 4(6): 9686-9696, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460059

ABSTRACT

The trimetallic Fe/Al/Ti (1:1:1) nanocomposite (FAT), synthesized by an adaptable tuned chemical route, offers a new approach for water treatment, for example, the de-fluoridation and photodegradation soluble dye methylene blue (MB) at pH 7. FAT acted as a good fluoride scavenger in the presence of other co-ions and within a widespread pH range (pH 2-11). The photodegradation efficiencies were >90% for different concentrations of MB solutions. The characterization of FAT includes thermogravimetric analysis, X-ray diffraction, Fourier transform-infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and ζ-potential analysis. Furthermore, the regeneration efficiencies of both the water treatments were checked, where the removal efficiency was not hampered significantly even after five batches. Spectroscopic techniques were adopted to perform the kinetic studies and to propose the probable mechanistic paths.

13.
Dalton Trans ; 44(12): 5428-40, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25691434

ABSTRACT

A 1 : 2 copper(II) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) having the molecular formula CuQ2 was prepared and characterized by elemental analysis, NMR, FTIR, UV-vis and mass spectroscopy. The powder diffraction of the solid complex, magnetic susceptibility and ESR spectra were also recorded. The presence of the planar anthraquinone moiety in the complex makes it extremely difficult to obtain a single crystal suitable for X-ray diffraction studies. To overcome this problem, density functional theory (DFT) was used to evaluate an optimized structure of CuQ2. In the optimized structure, it was found that there is a tilt of the two planar aromatic anthraquinone rings of the complex with respect to each other in the two planes containing the O-Cu(II)-O plane. The present study is an important addition to the understanding of the structural aspects of metal-anthracyclines because there are only a few reports on the actual structures of metal-anthracyclines. The theoretical vibrational spectrum of the complex was assigned with the help of vibrational energy distribution analysis (VEDA) using potential energy distribution (PED) and compared with experimental results. Being important in producing the biochemical action of this class of molecules, the electrochemical behavior of the complex was studied in aqueous and non-aqueous solvents to find certain electrochemical parameters. In aqueous media, reduction involves a kinetic effect during electron transfer at an electrode surface, which was characterized very carefully using cyclic voltammetry. Electrochemical studies showed a significant modification in the electrochemical properties of 1-amino-4-hydroxy-9,10-anthraquinone (QH) when bound to Cu(II) in the complex compared to those observed for free QH. This suggests that the copper complex might be a good choice as a biologically active molecule, which was reflected in the lack of stimulated superoxide generation by the complex.


Subject(s)
Anthraquinones/chemistry , Coordination Complexes/chemistry , Copper/chemistry , NADH Dehydrogenase/metabolism , Superoxides/metabolism , Amination , Anthraquinones/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Humans , Models, Molecular , Spectrum Analysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...