Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 8(9)2019 08 21.
Article in English | MEDLINE | ID: mdl-31438645

ABSTRACT

Tobacco in its smoke and smokeless form are major risk factors for esophageal squamous cell carcinoma (ESCC). However, molecular alterations associated with smokeless tobacco exposure are poorly understood. In the Indian subcontinent, tobacco is predominantly consumed in chewing form. An understanding of molecular alterations associated with chewing tobacco exposure is vital for identifying molecular markers and potential targets. We developed an in vitro cellular model by exposing non-transformed esophageal epithelial cells to chewing tobacco over an eight-month period. Chronic exposure to chewing tobacco led to increase in cell proliferation, invasive ability and anchorage independent growth, indicating cell transformation. Molecular alterations associated with chewing tobacco exposure were characterized by carrying out exome sequencing and quantitative proteomic profiling of parental cells and chewing tobacco exposed cells. Quantitative proteomic analysis revealed increased expression of cancer stem cell markers in tobacco treated cells. In addition, tobacco exposed cells showed the Oxidative Phosphorylation (OXPHOS) phenotype with decreased expression of enzymes associated with glycolytic pathway and increased expression of a large number of mitochondrial proteins involved in electron transport chain as well as enzymes of the tricarboxylic acid (TCA) cycle. Electron micrographs revealed increase in number and size of mitochondria. Based on these observations, we propose that chronic exposure of esophageal epithelial cells to tobacco leads to cancer stem cell-like phenotype. These cells show the characteristic OXPHOS phenotype, which can be potentially targeted as a therapeutic strategy.


Subject(s)
Epithelial Cells/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Plant Extracts/pharmacology , Tobacco, Smokeless/adverse effects , Cell Proliferation/drug effects , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/pathology , Esophageal Neoplasms/chemically induced , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Humans , Neoplastic Stem Cells/pathology , Phenotype
2.
Proteomics ; 17(7)2017 04.
Article in English | MEDLINE | ID: mdl-28176443

ABSTRACT

Keratin 8/18, a simple epithelia specific keratin pair, is often aberrantly expressed in squamous cell carcinomas (SCC) where its expression is correlated with increased invasion and poor prognosis. Majority of Keratin 8 (K8) functions are governed by its phosphorylation at Serine73 (head-domain) and Serine431 (tail-domain) residues. Although, deregulation of K8 phosphorylation is associated with progression of different carcinomas, its role in skin-SCC and the underlying mechanism is obscure. In this direction, we performed tandem mass tag-based quantitative phosphoproteomics by expressing K8 wild type, phosphodead, and phosphomimetic mutants in K8-deficient A431 cells. Further analysis of our phosphoproteomics data showed a significant proportion of total phosphoproteome associated with migratory, proliferative, and invasive potential of these cells to be differentially phosphorylated. Differential phosphorylation of CDK1T14,Y15 , EIF4EBP1T46,T50 , EIF4BS422 , AKT1S1T246,S247 , CTTN1T401,S405,Y421 , and CAP1S307/309 in K8-S73A/D mutant and CTTN1T401,S405,Y421 , BUB1BS1043 , and CARHSP1S30,S32 in K8-S431A/D mutants as well as some anonymous phosphosites including MYCS176 , ZYXS344 , and PNNS692 could be potential candidates associated with K8 phosphorylation mediated tumorigenicity. Biochemical validation followed by phenotypic analysis further confirmed our quantitative phosphoproteomics data. In conclusion, our study provides the first global picture of K8 site-specific phosphorylation function in neoplastic progression of A431 cells and suggests various potential starting points for further mechanistic studies.


Subject(s)
Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Keratin-8/genetics , Phosphoproteins/genetics , Proteomics/methods , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , CDC2 Protein Kinase , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cortactin/genetics , Cortactin/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/pathology , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Humans , Keratin-8/metabolism , Mutation , Phosphoproteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Skin/metabolism , Skin/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...