Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Assay Drug Dev Technol ; 22(3): 97-117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489509

ABSTRACT

Nanotechnology is a captivating contemporary technology owing to its extensive range of potential applications. This study emphasizes nanomaterials, substances with a size <100 nm, offering better qualities than coarse particles. Nanoparticles have several advantages compared with conventional drug delivery methods, including enhanced bioavailability and a larger surface area because of their smaller particle size. These characteristics make the nanoparticles a viable clinical candidate. Controlled-release drug delivery systems and targeted drug delivery systems rely heavily on nanoparticles. Because traditional drug delivery methods fail to achieve targeted drug delivery, resulting in toxicity, low bioavailability, poor therapeutic outcomes, and so on, these drug nanoparticles excel in all these areas. Researchers are already interested in developing drug delivery systems such as niosomes, bilosomes, and dendrimers. Nanoemulsion is one of these technologies; nanoemulsions outperform traditional emulsions in terms of pharmacodynamics and pharmacokinetics. Nanoemulsion effectively surpasses the constraints of standard emulsions, primarily by offering enhanced bioavailability, reduced toxicity, improved absorption, and the potential to be used in targeted drug delivery or controlled-release drug delivery systems. This particular work explores several aspects of nanoemulsions, including their constituents, classification, techniques for preparation, criteria for assessment, commercial applications, and future prospects.


Subject(s)
Emulsions , Nanoparticles , Emulsions/chemistry , Nanoparticles/chemistry , Humans , Drug Delivery Systems , Particle Size , Nanotechnology
2.
J Renin Angiotensin Aldosterone Syst ; 15(4): 410-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-23396552

ABSTRACT

INTRODUCTION: The objective of this article is to investigate the combination of telmisartan with vildagliptin therapy versus monotherapy of vildagliptin and telmisartan on diabetic nephropathy in type 2 diabetes mellitus rats. MATERIALS AND METHODS: In adult rats streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg) were injected intraperitoneally to produce diabetic nephropathy. Rats of either sex allotted to the following groups: (i) triple therapy: metformin (120 mg/kg, o.d.) + pioglitazone (1.25 mg/kg, o.d.) + glimepiride (0.7 mg/kg, o.d.); (ii) dual therapy: vildagliptin (8.76 mg/kg, o.d.) + telmisartan (6.48 mg/kg, o.d.); (iii) vildagliptin (8.76 mg/kg, o.d.); and (iv) telmisartan (6.48 mg/kg, o.d.); therapy was carried out for 35 days orally. Weekly at days 7, 14, 21, 28 and 35, blood pressure, blood glucose level, body weight, blood serum creatinine level, protein albumin level in urine, and blood urea nitrogen (BUN) were estimated. Renal structural changes were observed. RESULTS: Blood pressure, blood glucose level, blood serum creatinine level, protein albumin level in urine, BUN and renal deterioration increased significantly in diabetic rats compared with normal control rats. The vildagliptin + telmisartan treatment group showed no weight gain and controlled blood pressure, renovascular structural and biochemical parameters in diabetic neuropathy rats. CONCLUSIONS: The addition of telmisartan to vildagliptin demonstrated the best control over blood pressure, glycemia and diabetic nephropathy markers, renal structural changes and improvement of renal function as opposed to monotherapy with either drug, possibly because of the dual inhibitory effect on the renin-angiotensin system.


Subject(s)
Adamantane/analogs & derivatives , Benzimidazoles/therapeutic use , Benzoates/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Nitriles/therapeutic use , Pyrrolidines/therapeutic use , Adamantane/pharmacology , Adamantane/therapeutic use , Albuminuria/complications , Animals , Benzimidazoles/pharmacology , Benzoates/pharmacology , Blood Glucose/metabolism , Blood Pressure/drug effects , Blood Urea Nitrogen , Body Weight/drug effects , Creatinine/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/complications , Diabetic Nephropathies/physiopathology , Diastole/drug effects , Drug Therapy, Combination , Fasting/blood , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Nitriles/pharmacology , Pyrrolidines/pharmacology , Rats, Wistar , Systole/drug effects , Telmisartan , Vildagliptin
3.
J Biomed Res ; 26(3): 200-10, 2012 May.
Article in English | MEDLINE | ID: mdl-23554750

ABSTRACT

Diabetic neuropathies are a family of nerve disorders caused by diabetes. Symptoms of the disease include nerve palsy, mononeuropathy, mononeuropathy multiplex, diabetic amyotrophy, painful polyneuropathy, autonomic neuropathy, and thoracoabdominal neuropathy. In this study, type 2 diabetes in rats was induced with nicotinamide-streptozotocin. Drug treatment was initiated on the d 15, with the combination regimen of metformin, pioglitazone and glimipiride or metformin and sitagliptin or sitagliptin, amitriptyline and sitagliptin and led to significantly improved glycemic control, increased grip strength and paw jumping response on d 21, 28 and 35 (P < 0.001). Significant increases in blood protein levels and decreases in urinary protein levels were observed in the animals treated with the different regimens on d 21, 28 and 35 (P < 0.001). Combined treatment of streptozotocin and nicotinamide caused marked degeneration of nerve cells, while administration of metformin and sitagliptin showed tissue regeneration and no body weight gain. In conclusion, treatment with sitagliptin and sitagliptin combined with metformin or amitriptyline results in no body weight gain, but causes an increase in grip strength and pain sensitivity, exhibits neural protection, and reverses the alteration of biochemical parameters in rats with streptozotocin-nicotinamide induced type 2 diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...