Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(1): e0280824, 2023.
Article in English | MEDLINE | ID: mdl-36696434

ABSTRACT

Healthy natural forests maintain and/or enhances carbon stock while also providing potential habitat and an array of services to wildlife including large carnivores such as the tiger. This study is the first of its kind in assessing relationships between above-ground biomass carbon stock, tiger density and occupancy probability and its status in protected areas, corridors, and forest connectivity blocks. The dataset used to assess the relationship were: (1) Converged posterior tiger density estimates from camera trap data derived from Bayesian- Spatially Explicit Capture-Recapture model from Chitwan National Park; (2) Site wise probability of tiger occupancy estimated across the Terai Arc Landscape and (3) Habitat wise above-ground biomass carbon stock estimated across the Terai Arc Landscape. Carbon stock maps were derived based on eight habitat classes and conservation units linking satellite (Landsat 7 ETM+) images and field collected sampling data. A significant negative relationship (r = -0.20, p<0.01) was observed between above-ground biomass carbon stock and tiger density in Chitwan National Park and with tiger occupancy (r = -0.24, p = 0.023) in the landscape. Within protected areas, we found highest mean above-ground biomass carbon stock in high density mixed forest (~223 tC/ha) and low in degraded scrubland (~73.2 tC/ha). Similarly, we found: (1) highest tiger density ~ 0.06 individuals per 0.33 km2 in the riverine forest and lowest estimates (~0.00) in degraded scrubland; and (2) predictive tiger density of 0.0135 individuals per 0.33 km2 is equivalent to mean total of 43.7 tC/ha in Chitwan National Park. Comparatively, we found similar above-ground biomass carbon stock among corridors, large forest connectivity blocks (~117 tC/ha), and within in tiger bearing protected areas (~119 tC/ha). Carbon conservation through forest restoration particularly in riverine habitats (forest and grassland) and low transitional state forests (degraded scrubland) provides immense opportunities to generate win-win solutions, sequester more carbon and maintain habitat integrity for tigers and other large predators.


Subject(s)
Tigers , Humans , Animals , Biomass , Population Density , Carbon , Nepal , Bayes Theorem , Conservation of Natural Resources , Ecosystem , Forests
2.
Glob Chang Biol ; 27(4): 941-955, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33222345

ABSTRACT

Among the global coordinated patterns in soil temperature and methane emission from wetlands, a declining trend of optimal soil temperature for methane emissions from low to high latitudes has been witnessed, while the corresponding trend along the altitudinal gradient has not yet been investigated. We therefore selected two natural wetlands located at contrasting climatic zones from foothill and mountainside of Nepal Himalayas, to test: (1) whether the optimal temperature for methane emissions decreases from low to high altitude, and (2) whether there is a difference in temperature sensitivity of methane emissions from those wetlands. We found significant spatial and temporal variation of methane emissions between the two wetlands and seasons. Soil temperature was the dominant driver for seasonal variation in methane emissions from both wetlands, though its effect was perplexed by the level of standing water, aquatic plants, and dissolved organic carbon, particularly in the deep water area. When integrative comparison was conducted by adding the existing data from wetlands of diverse altitudes, and the latitude-for-altitude effect was taken into account, we found the baseline soil temperatures decrease whilst the altitude rises with respect to a rapid increase in methane emission from all wetlands, however, remarkably higher sensitivity of methane emissions to soil temperature (apparent Q10 ) was found in mid-altitude wetland. We provide the first evidence of an apparent decline in optimal temperature for methane emissions with increasing elevation. These findings suggest a convergent pattern of methane emissions with respect to seasonal temperature shifts from wetlands along altitudinal gradient, while a divergent pattern in temperature sensitivities exhibits a single peak in mid-altitude.


Subject(s)
Methane , Wetlands , Altitude , Methane/analysis , Nepal , Soil , Temperature
4.
PLoS One ; 13(3): e0193495, 2018.
Article in English | MEDLINE | ID: mdl-29561865

ABSTRACT

With fewer than 200 tigers (Panthera tigris tigris) left in Nepal, that are generally confined to five protected areas across the Terai Arc Landscape, genetic studies are needed to provide crucial information on diversity and connectivity for devising an effective country-wide tiger conservation strategy. As part of the Nepal Tiger Genome Project, we studied landscape change, genetic variation, population structure, and gene flow of tigers across the Terai Arc Landscape by conducting Nepal's first comprehensive and systematic scat-based, non-invasive genetic survey. Of the 770 scat samples collected opportunistically from five protected areas and six presumed corridors, 412 were tiger (57%). Out of ten microsatellite loci, we retain eight markers that were used in identifying 78 individual tigers. We used this dataset to examine population structure, genetic variation, contemporary gene flow, and potential population bottlenecks of tigers in Nepal. We detected three genetic clusters consistent with three demographic sub-populations and found moderate levels of genetic variation (He = 0.61, AR = 3.51) and genetic differentiation (FST = 0.14) across the landscape. We detected 3-7 migrants, confirming the potential for dispersal-mediated gene flow across the landscape. We found evidence of a bottleneck signature likely caused by large-scale land-use change documented in the last two centuries in the Terai forest. Securing tiger habitat including functional forest corridors is essential to enhance gene flow across the landscape and ensure long-term tiger survival. This requires cooperation among multiple stakeholders and careful conservation planning to prevent detrimental effects of anthropogenic activities on tigers.


Subject(s)
Gene Flow , Genetic Variation , Genetics, Population , Tigers/genetics , Animal Migration , Animals , Conservation of Natural Resources , Ecosystem , Female , Genotype , Male , Microsatellite Repeats , Nepal
5.
PLoS One ; 12(6): e0177548, 2017.
Article in English | MEDLINE | ID: mdl-28591175

ABSTRACT

The source populations of tigers are mostly confined to protected areas, which are now becoming isolated. A landscape scale conservation strategy should strive to facilitate dispersal and survival of dispersing tigers by managing habitat corridors that enable tigers to traverse the matrix with minimal conflict. We present evidence for tiger dispersal along transboundary protected areas complexes in the Terai Arc Landscape, a priority tiger landscape in Nepal and India, by comparing camera trap data, and through population models applied to the long term camera trap data sets. The former showed that 11 individual tigers used the corridors that connected the transboundary protected areas. The estimated population growth rates using the minimum observed population size in two protected areas in Nepal, Bardia National Park and Suklaphanta National Park showed that the increases were higher than expected from growth rates due to in situ reproduction alone. These lines of evidence suggests that tigers are recolonizing Nepal's protected areas from India, after a period of population decline, and that the tiger populations in the transboundary protected areas complexes may be maintained as meta-population. Our results demonstrate the importance of adopting a landscape-scale approach to tiger conservation, especially to improve population recovery and long term population persistence.


Subject(s)
Conservation of Natural Resources , Population Dynamics , Tigers/physiology , Animals , Ecosystem , India , Models, Theoretical , Nepal , Population Density
7.
Zookeys ; (582): 143-56, 2016.
Article in English | MEDLINE | ID: mdl-27199590

ABSTRACT

The taxonomic status of the wolf (Canis lupus) in Nepal's Trans-Himalaya is poorly understood. Recent genetic studies have revealed the existence of three lineages of wolves in the Indian sub-continent. Of these, the Himalayan wolf, Canis lupus chanco, has been reported to be the most ancient lineage historically distributed within the Nepal Himalaya. These wolves residing in the Trans-Himalayan region have been suggested to be smaller and very different from the European wolf. During October 2011, six fecal samples suspected to have originated from wolves were collected from Upper Mustang in the Annapurna Conservation Area of Nepal. DNA extraction and amplification of the mitochondrial (mt) control region (CR) locus yielded sequences from five out of six samples. One sample matched domestic dog sequences in GenBank, while the remaining four samples were aligned within the monophyletic and ancient Himalayan wolf clade. These four sequences which matched each other, were new and represented a novel Himalayan wolf haplotype. This result confirms that the endangered ancient Himalayan wolf is extant in Nepal. Detailed genomic study covering Nepal's entire Himalayan landscape is recommended in order to understand their distribution, taxonomy and, genetic relatedness with other wolves potentially sharing the same landscape.

8.
PLoS One ; 10(7): e0133035, 2015.
Article in English | MEDLINE | ID: mdl-26176773

ABSTRACT

Nepal boarders India and China and all three countries lie within the Central Asian Flyway for migratory birds. Novel influenza A H7N9 caused human fatalities in China in 2013. Subclinical infections of influenza A H7N9 in birds and the potential for virus dispersal by migratory birds prompted this study to assess avian H7N9 viral intrusion into Nepal. Surveillance of influenza A virus in migratory birds was implemented in early 2014 with assistance from the Food and Agricultural Organization (FAO). Of 1811 environmental fecal samples collected from seven wetland migratory bird roosting areas, influenza A H9N2 was found in one sample from a ruddy shelduck in Koshi Tappu Wildlife Reserve located in southern Nepal. Avian H7N9 and other highly pathogenic avian influenza viruses were not detected. This study provides baseline data on the status of avian influenza virus in migratory bird populations in Nepal.


Subject(s)
Birds/virology , Epidemiological Monitoring/veterinary , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Animal Migration/physiology , Animals , Animals, Wild , Feces/virology , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/virology , Nepal/epidemiology , Phylogeny
9.
BMC Res Notes ; 4: 516, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22117538

ABSTRACT

BACKGROUND: The endangered snow leopard is found throughout major mountain ranges of Central Asia, including the remote Himalayas. However, because of their elusive behavior, sparse distribution, and poor access to their habitat, there is a lack of reliable information on their population status and demography, particularly in Nepal. Therefore, we utilized noninvasive genetic techniques to conduct a preliminary snow leopard survey in two protected areas of Nepal. RESULTS: A total of 71 putative snow leopard scats were collected and analyzed from two different areas; Shey Phoksundo National Park (SPNP) in the west and Kangchanjunga Conservation Area (KCA) in the east. Nineteen (27%) scats were genetically identified as snow leopards, and 10 (53%) of these were successfully genotyped at 6 microsatellite loci. Two samples showed identical genotype profiles indicating a total of 9 individual snow leopards. Four individual snow leopards were identified in SPNP (1 male and 3 females) and five (2 males and 3 females) in KCA. CONCLUSIONS: We were able to confirm the occurrence of snow leopards in both study areas and determine the minimum number present. This information can be used to design more in-depth population surveys that will enable estimation of snow leopard population abundance at these sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...