Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(7): 1847-1853, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33577332

ABSTRACT

As organic photovoltaic performance approaches 20% efficiencies, causal structure-performance relationships must be established for devices to realize theoretical limits and become commercially competitive. Here, we reveal evidence of a causal relationship between mixed donor-acceptor interfaces and charge generation in polymer-fullerene solar cells. To do this, we combine a holistic loss analysis of device performance with quantitative synchrotron X-ray nanocharacterization to identify a >98% anticorrelation between field-dependent geminate recombination and nanodomain purity. Importantly, our analysis eliminates other possible explanations of the performance trends, a requirement to establish causality. The unprecedented granular level of our analysis also separates field-dependent and field-independent recombination at the interface, where we find for the first time that this system is free of field-independent recombination, a loss channel that plagues high-performance systems, including those with non-fullerene acceptors. This result broadens the case that minimizing mixed phases to promote sharp interfaces between pure aggregated domains is the ideal nanostructure for realizing theoretical efficiency limits of organic photovoltaics.

SELECTION OF CITATIONS
SEARCH DETAIL
...