Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(25): e2401515, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38654624

ABSTRACT

Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes' rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.


Subject(s)
Athletes , Silver , Wearable Electronic Devices , Humans , Silver/chemistry , Biomimetics/methods , Pressure , Equipment Design , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Manganese/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Oxides/chemistry
2.
Front Bioeng Biotechnol ; 11: 1303142, 2023.
Article in English | MEDLINE | ID: mdl-38026884

ABSTRACT

Herein, a flexible pressure sensor with high sensitivity was created using a dielectric layer featuring a hierarchical pyramid microstructure, both in simulation and fabrication. The capacitive pressure sensor comprises a hierarchically arranged dielectric layer made of polydimethylsiloxane (PDMS) with pyramid microstructures, positioned between copper electrodes at the top and bottom. The achievement of superior sensing performance is highly contingent upon the thickness of the dielectric layer, as indicated by both empirical findings and finite-element analysis. Specifically, the capacitive pressure sensor, featuring a dielectric layer thickness of 0.5 mm, exhibits a remarkable sensitivity of 0.77 kPa-1 within the pressure range below 1 kPa. It also demonstrates an impressive response time of 55 ms and recovery time of 42 ms, along with a low detection limit of 8 Pa. Furthermore, this sensor showcases exceptional stability and reproducibility with up to 1,000 cycles. Considering its exceptional achievements, the pressure sensor has been effectively utilized for monitoring physiological signals, sign language gestures, and vertical mechanical force exerted on objects. Additionally, a 5 × 5 sensor array was fabricated to accurately and precisely map the shape and position of objects. The pressure sensor with advanced performance shows broad potential in electronic skin applications.

3.
Anal Methods ; 15(14): 1765-1774, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36880531

ABSTRACT

To detect drug concentration in tacrolimus solution, an anchor planar millifluidic microwave (APMM) biosensor is proposed. The millifluidic system integrated with the sensor enables accurate and efficient detection while eliminating interference caused by the fluidity of the tacrolimus sample. Different concentrations (10-500 ng mL-1) of the tacrolimus analyte were introduced into the millifluidic channel, where it completely interacts with the radio frequency patch electromagnetic field, thereby effectively and sensitively modifying the resonant frequency and amplitude of the transmission coefficient. Experimental results indicate that the sensor has an extremely low limit of detection (LoD) of 0.12 pg mL-1 and a frequency detection resolution (FDR) of 1.59 (MHz (ng mL-1)). The greater the FDR and the lower the LoD, the more the feasibility of a label-free biosensing method. Regression analysis revealed a strong linear correlation (R2 = 0.992) between the concentration of tacrolimus and the frequency difference of the two resonant peaks of APMM. In addition, the difference in the reflection coefficient between the two formants was measured and calculated, and a strong linear correlation (R2 = 0.998) was found between the difference and tacrolimus concentration. Five measurements were performed on each individual sample of tacrolimus to validate the biosensor's high repeatability. Consequently, the proposed biosensor is a potential candidate for the early detection of tacrolimus drug concentration levels in organ transplant recipients. This study presents a simple method for constructing microwave biosensors with high sensitivity and rapid response.


Subject(s)
Biosensing Techniques , Tacrolimus , Microwaves , Radio Waves , Limit of Detection
4.
Cancers (Basel) ; 16(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201608

ABSTRACT

Laryngeal cancer (LCA) is a serious disease with a concerning global rise in incidence. Accurate treatment for LCA is particularly challenging in later stages, due to its complex nature as a head and neck malignancy. To address this challenge, researchers have been actively developing various analysis methods and tools to assist medical professionals in efficient LCA identification. However, existing tools and methods often suffer from various limitations, including low accuracy in early-stage LCA detection, high computational complexity, and lengthy patient screening times. With this motivation, this study presents an Automated Laryngeal Cancer Detection and Classification using a Dwarf Mongoose Optimization Algorithm with Deep Learning (ALCAD-DMODL) technique. The main objective of the ALCAD-DMODL method is to recognize the existence of LCA using the DL model. In the presented ALCAD-DMODL technique, a median filtering (MF)-based noise removal process takes place to get rid of the noise. Additionally, the ALCAD-DMODL technique involves the EfficientNet-B0 model for deriving feature vectors from the pre-processed images. For optimal hyperparameter tuning of the EfficientNet-B0 model, the DMO algorithm can be applied to select the parameters. Finally, the multi-head bidirectional gated recurrent unit (MBGRU) model is applied for the recognition and classification of LCA. The simulation result analysis of the ALCAD-DMODL technique is carried out on the throat region image dataset. The comparison study stated the supremacy of the ALCAD-DMODL technique in terms of distinct measures.

5.
Sci Rep ; 12(1): 15961, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153402

ABSTRACT

This paper presents a microwave microfluidic biosensor for monitoring blood glucose levels. The glucose sensor is a triple ring microstrip patch antenna integrated with a biomimetic microfluidic device capable of measuring a fixed volume of glucose solution. The sensor was utilized to detect 50-500 mg/dL glucose solutions. The interaction of the glucose solution with the electromagnetic field on the patch's surface influences both the resonance frequency and the magnitude of reflection coefficient. The results indicate that the microfluidic device can reduce experimental error and enhance the correlation between glucose concentration, resonant frequency, and reflection coefficient. Finally, the microfluidic sensor had a sensitivity of 0.25 MHz/(mg/dL), a detection limit as low as 7.7 mg/dL, and correlation coefficients of resonance frequency and reflection coefficient with a glucose concentration of 0.996 and 0.984, respectively. The experiment on the sensor's stability verifies the sensor's excellent stability and rapid response (~ 150 ms). Consequently, the device can be used to differentiate the concentration of glucose solutions, as well as to detect blood glucose levels at an early stage.


Subject(s)
Biomimetic Materials , Biosensing Techniques , Blood Glucose , Glucose , Microfluidics/methods , Microwaves
6.
Nanoscale Adv ; 4(18): 3987-3995, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36133328

ABSTRACT

Flexible and wearable pressure sensors have attracted extensive attention in domains, such as electronic skin, medical monitoring and human-machine interaction. However, developing a pressure sensor with high sensitivity, mechanical stability and a wide detection range remains a huge challenge. In this work, a flexible capacitive pressure sensor, based on a Ti3C2T x (MXene)/polyvinyl pyrrolidone (PVP) composite nanofiber membrane (CNM), prepared via an efficient electrospinning process, is presented. The experimental results show that even a small mass fraction of MXene can effectively decrease the compression modulus of the PVP nanofiber membrane, thus enhancing the sensing performance. Specifically, the sensor based on (0.1 wt% MXene)/PVP CNM has a high sensitivity (0.5 kPa-1 at 0-1.5 kPa), a fast response/recovery time (45/45 ms), a wide pressure detection range (0-200 kPa), a low detection limit (∼9 Pa) and an excellent mechanical stability (8000 cycles). Due to its superior performance, the sensor can monitor subtle changes in human physiology and other signals, such as pulse, respiration, human joint motions and airflow. In addition, a 4 × 4 sensor array is fabricated that can accurately map the shape and position of objects with good resolution. The high-performance flexible pressure sensor, as developed in this work, shows good application prospects in advanced human-computer interface systems.

7.
Sensors (Basel) ; 18(4)2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29614033

ABSTRACT

We present a microfabricated spiral-coupled passive resonator sensor realized through integrated passive device (IPD) technology for the sensitive detection and characterization of water-ethanol solutions. In order to validate the performance of the proposed device, we explicitly measured and analyzed the radio frequency (RF) characteristics of various water-ethanol solution compositions. The measured results showed a drift in the resonance frequency from 1.16 GHz for deionized (DI) water to 1.68 GHz for the solution containing 50% ethanol, whereas the rejection level given by the reflection coefficient decreased from -29.74 dB to -14.81 dB. The obtained limit of detection was 3.82% volume composition of ethanol in solution. The derived loaded capacitance was 21.76 pF for DI water, which gradually decreased to 8.70 pF for the 50% ethanol solution, and the corresponding relative permittivity of the solution decreased from 80.14 to 47.79. The dissipation factor increased with the concentration of ethanol in the solution. We demonstrated the reproducibility of the proposed sensor through iterative measures of the samples and the study of surface morphology. Successive measurement of different samples had no overlapping and had very minimum bias between RF characteristics for each measured sample. The surface profile for bare sensors was retained after the sample test, resulting a root mean square (RMS) value of 11.416 nm as compared to 10.902 nm for the bare test. The proposed sensor was shown to be a viable alternative to existing sensors for highly sensitive water-ethanol concentration detection.

8.
RSC Adv ; 8(58): 33072-33079, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-35548156

ABSTRACT

Passive sensors provide a new route for the characterization of concentration-dependent radiofrequency parameters with high reproducibility in real time. We propose a microfabricated resonator realized using integrated passive device technology for the sensitive detection and characterization of glucose. Experimental results verify the high performance of the proposed biosensor, because radiofrequency parameters such as resonance frequency (from 0.541 to 1.05 GHz) and reflection coefficient (from -34.04 to -24.11 dB) linearly vary in response to deionized water and subsequent iterative measurements of different glucose concentrations (from 50 to 250 mg dL-1). The biosensor has a very low limit of detection of 8.46 mg dL-1, a limit of quantitation of 25.63 mg dL-1, a minimum frequency sensitivity of 29 MHz, and a minimum magnitude sensitivity of 0.22 dB. Moreover, the coupling coefficient consistently decreases with the increasing glucose concentration. We also used the measured radiofrequency parameters to determine the unknown permittivity of glucose samples through mathematical modeling. A decreasing trend in the loss tangent and an increasing trend in the characteristic wave impedance were observed with the increase of glucose concentration. The reproducibility of the sensor was verified through iterative measurements on the same sensor surface and subsequent study of surface morphology.

9.
Med Eng Phys ; 41: 55-62, 2017 03.
Article in English | MEDLINE | ID: mdl-28159448

ABSTRACT

We present a concept for the characterization of micro-fabricated based resonator incorporating air-bridge metal-insulator-semiconductor (MIS) capacitor to continuously monitor an individual's state of glucose levels based on frequency variation. The investigation revealed that, the micro-resonator based on MIS capacitor holds considerable promise for implementation and recognition as a glucose sensor for human serum. The discrepancy in complex permittivity as a result of enhanced capacitor was achieved for the detection and determination of random glucose concentration levels using a unique variation of capacitor that indeed results in an adequate variation of the resonance frequency. Moreover, the design and development of micro-resonator with enhanced MIS capacitor generate a resolution of 112.38 × 10-3pF/mg/dl, minimum detectable glucose level of 7.45mg/dl, and a limit of quantification of 22.58mg/dl. Additionally, this unique approach offers long-term reliability for mediator-free glucose sensing with a relative standard deviation of less than 0.5%.


Subject(s)
Blood Glucose/analysis , Metals , Microtechnology/instrumentation , Semiconductors , Blood Chemical Analysis/instrumentation , Electric Capacitance , Radio Waves
10.
Sci Rep ; 5: 7807, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25588958

ABSTRACT

Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL(-1) and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 µM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose.


Subject(s)
Biosensing Techniques/instrumentation , Glucose/analysis , Radio Waves , Recycling , Blood Glucose/analysis , Electricity , Humans , Sensitivity and Specificity , Staining and Labeling
11.
ScientificWorldJournal ; 2013: 457693, 2013.
Article in English | MEDLINE | ID: mdl-24319367

ABSTRACT

This paper presents a symmetric-type microstrip triple-band bandstop filter incorporating a tri-section meandered-line stepped impedance resonator (SIR). The length of each section of the meandered line is 0.16, 0.15, and 0.83 times the guided wavelength (λ g ), so that the filter features three stop bands at 2.59 GHz, 6.88 GHz, and 10.67 GHz, respectively. Two symmetric SIRs are employed with a microstrip transmission line to obtain wide bandwidths of 1.12, 1.34, and 0.89 GHz at the corresponding stop bands. Furthermore, an equivalent circuit model of the proposed filter is developed, and the model matches the electromagnetic simulations well. The return losses of the fabricated filter are measured to be -29.90 dB, -28.29 dB, and -26.66 dB while the insertion losses are 0.40 dB, 0.90 dB, and 1.10 dB at the respective stop bands. A drastic reduction in the size of the filter was achieved by using a simplified architecture based on a meandered-line SIR.


Subject(s)
Electronics/methods , Microwaves , Models, Theoretical , Telecommunications/instrumentation , Telecommunications/trends , Computer Simulation , Electric Impedance
SELECTION OF CITATIONS
SEARCH DETAIL
...