Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399752

ABSTRACT

Streptococcus thermophilus is widely used as a starter culture in the dairy industry and has garnered attention as a beneficial bacterium owing to its health-promoting functionalities in humans. In this study, the probiotic potential of S. thermophilus MCC0200 isolated from a dairy product was investigated through a combinatorial approach of in vitro and in silico studies. MCC0200 demonstrated the ability to survive harsh gastrointestinal (GI) transit, adhere to intestinal mucosa and exert health-promoting traits in in vitro studies. These findings were corroborated with in silico evidence, wherein, MCC0200 genome harboured genes associated with tolerance to GI conditions, intestinal adhesion and colonization. Genome mapping also highlighted the ability of MCC0200 to produce compounds advantageous for the host (folate, bacteriocins), to release antioxidant enzymes that can quench the free radicals (superoxide dismutase, NADH peroxidase), and to metabolize food components that can be harmful to sensitive people (lactose). MCC0200 also demonstrated a positive effect on reducing cholesterol levels, proving to be a potential candidate for food and pharmaceutical applications. The absence of transmissible antibiotic resistance genes and virulence genes underscored the generally regarded as safe (GRAS) nature of MCC0200. This study explored the potential of Streptococcus thermophilus for its probable applications as a probiotic beyond the dairy industry.

2.
J Biol Chem ; 299(7): 104894, 2023 07.
Article in English | MEDLINE | ID: mdl-37286040

ABSTRACT

A common feature among nearly all gram-negative bacteria is the requirement for lipopolysaccharide (LPS) in the outer leaflet of the outer membrane. LPS provides structural integrity to the bacterial membrane, which aids bacteria in maintaining their shape and acts as a barrier from environmental stress and harmful substances such as detergents and antibiotics. Recent work has demonstrated that Caulobacter crescentus can survive without LPS due to the presence of the anionic sphingolipid ceramide-phosphoglycerate (CPG). Based on genetic evidence, we predicted that protein CpgB functions as a ceramide kinase and performs the first step in generating the phosphoglycerate head group. Here, we characterized the kinase activity of recombinantly expressed CpgB and demonstrated that it can phosphorylate ceramide to form ceramide 1-phosphate. The pH optimum for CpgB was 7.5, and the enzyme required Mg2+ as a cofactor. Mn2+, but no other divalent cations, could substitute for Mg2+. Under these conditions, the enzyme exhibited typical Michaelis-Menten kinetics with respect to NBD C6-ceramide (Km,app = 19.2 ± 5.5 µM; Vmax,app = 2590 ± 230 pmol/min/mg enzyme) and ATP (Km,app = 0.29 ± 0.07 mM; Vmax,app = 10,100 ± 996 pmol/min/mg enzyme). Phylogenetic analysis of CpgB revealed that CpgB belongs to a new class of ceramide kinases, which is distinct from its eukaryotic counterpart; furthermore, the pharmacological inhibitor of human ceramide kinase (NVP-231) had no effect on CpgB. The characterization of a new bacterial ceramide kinase opens avenues for understanding the structure and function of the various microbial phosphorylated sphingolipids.


Subject(s)
Caulobacter crescentus , Ceramides , Humans , Caulobacter crescentus/enzymology , Ceramides/metabolism , Lipopolysaccharides , Phylogeny , Sphingolipids/metabolism
3.
bioRxiv ; 2023 May 01.
Article in English | MEDLINE | ID: mdl-37205603

ABSTRACT

A common feature among nearly all Gram-negative bacteria is the requirement for lipopolysaccharide (LPS) in the outer leaflet of the outer membrane. LPS provides structural integrity to the bacterial membrane which aids bacteria in maintaining their shape and acts as a barrier from environmental stress and harmful substances such as detergents and antibiotics. Recent work has demonstrated that Caulobacter crescentus can survive without LPS due to the presence of the anionic sphingolipid ceramide-phosphoglycerate. Based on genetic evidence, we predicted that protein CpgB functions as a ceramide kinase and performs the first step in generating the phosphoglycerate head group. Here, we characterized the kinase activity of recombinantly expressed CpgB and demonstrated that it can phosphorylate ceramide to form ceramide 1-phosphate. The pH optimum for CpgB was 7.5, and the enzyme required Mg 2+ as a cofactor. Mn 2+ , but not other divalent cations, could substitute for Mg 2+ . Under these conditions, the enzyme exhibited typical Michaelis-Menten kinetics with respect to NBD-C6-ceramide (K m,app =19.2 ± 5.5 µM; V max,app =2586.29 ± 231.99 pmol/min/mg enzyme) and ATP (K m,app =0.29 ± 0.07 mM; V max,app =10067.57 ± 996.85 pmol/min/mg enzyme). Phylogenetic analysis of CpgB revealed that CpgB belongs to a new class of ceramide kinases which is distinct from its eukaryotic counterpart; furthermore, the pharmacological inhibitor of human ceramide kinase (NVP-231) had no effect on CpgB. The characterization of a new bacterial ceramide kinase opens avenues for understanding the structure and function of the various microbial phosphorylated sphingolipids.

SELECTION OF CITATIONS
SEARCH DETAIL
...