Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37508810

ABSTRACT

Medical 3D printing is a complex, highly interdisciplinary, and revolutionary technology that is positively transforming the care of patients. The technology is being increasingly adopted at the Point of Care (PoC) as a consequence of the strong value offered to medical practitioners. One of the key technologies within the medical 3D printing portfolio enabling this transition is desktop inverted Vat Photopolymerization (VP) owing to its accessibility, high quality, and versatility of materials. Several reports in the peer-reviewed literature have detailed the medical impact of 3D printing technologies as a whole. This review focuses on the multitude of clinical applications of desktop inverted VP 3D printing which have grown substantially in the last decade. The principles, advantages, and challenges of this technology are reviewed from a medical standpoint. This review serves as a primer for the continually growing exciting applications of desktop-inverted VP 3D printing in healthcare.

3.
Gels ; 10(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275845

ABSTRACT

Three-dimensional (3D) printing, also known as additive manufacturing, has revolutionized the production of physical 3D objects by transforming computer-aided design models into layered structures, eliminating the need for traditional molding or machining techniques. In recent years, hydrogels have emerged as an ideal 3D printing feedstock material for the fabrication of hydrated constructs that replicate the extracellular matrix found in endogenous tissues. Hydrogels have seen significant advancements since their first use as contact lenses in the biomedical field. These advancements have led to the development of complex 3D-printed structures that include a wide variety of organic and inorganic materials, cells, and bioactive substances. The most commonly used 3D printing techniques to fabricate hydrogel scaffolds are material extrusion, material jetting, and vat photopolymerization, but novel methods that can enhance the resolution and structural complexity of printed constructs have also emerged. The biomedical applications of hydrogels can be broadly classified into four categories-tissue engineering and regenerative medicine, 3D cell culture and disease modeling, drug screening and toxicity testing, and novel devices and drug delivery systems. Despite the recent advancements in their biomedical applications, a number of challenges still need to be addressed to maximize the use of hydrogels for 3D printing. These challenges include improving resolution and structural complexity, optimizing cell viability and function, improving cost efficiency and accessibility, and addressing ethical and regulatory concerns for clinical translation.

SELECTION OF CITATIONS
SEARCH DETAIL
...