Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Biol Macromol ; 200: 397-408, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35041891

ABSTRACT

Incompatibility of nanocellulose with non-polar polymer matrices disrupts the interfacial interaction and results in aggregation and phase separation. In this study a facile and environmentally friendly method was used to partially substitute the surface hydroxyl groups by attaching polysiloxane to impart hydrophobic properties. The silanization reaction proceeded with hydrolysis of triethoxyvinylsilane (TEVS) into reactive silanols followed by condensation to form the branched polymer. These polysiloxane oligomers were chemically grafted to form alkoxy silane bonds on the surface of CNCs. A suitable degree of hydrophilic-hydrophobic balance of the modified CNCs was achieved which improved their dispersion in hydrophobic matrix poly(butylene adipate-co-terephthalate) (PBAT). FTIR, NMR (13C and 29Si) and XPS demonstrated successful surface chemical modification and confirmed extent of silanization as a function of silane concentration. XRD showed successful grafting of the vinyl silane agent and confirmed polymorph structure of the nanocellulose was retained. The results from TEM and AFM demonstrated successful coating of nano whiskers at 5 wt% silane loading. The successful grafting of the silane agent with pendant vinyl groups improved surface hydrophobicity. These results show that this facile method produces adequately surface modified CNC which can be used as filler in hydrophobic matrices of bioplastics.


Subject(s)
Cellulose
2.
Sci Total Environ ; 775: 145871, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33631573

ABSTRACT

Synthetic polymers, commonly referred to as plastics, are anthropogenic contaminants that adversely affect the natural ecosystems. The continuous disposal of long lifespan plastics has resulted in the accumulation of plastic waste, leading to significant pollution of both marine and terrestrial habitats. Scientific pursuit to seek environment-friendly materials from renewable resources has focused on cellulose, the primary reinforcement component of the cell wall of plants, as it is the most abundantly available biopolymer on earth. This paper provides an overview on the current state of science on nanocellulose research; highlighting its extraction procedures from lignocellulosic biomass. Literature shows that the process used to obtain nanocellulose from lignocellulosic biomass greatly influences its morphology, properties and surface chemistry. The efficacy of chemical methods that use alkali, acid, bleaching agents, ionic liquids, deep eutectic solvent for pre-treatment of biomass is discussed. There has been a continuous endeavour to optimize the pre-treatment protocol as it is specific to lignocellulosic biomass and also depends on factors such as nature of the biomass, process and environmental parameters and economic viability. Nanofibers are primarily isolated through mechanical fibrillation while nanocrystals are predominantly extracted using acid hydrolysis. A concise overview on the ways to improve the yield of nanocellulose from cellulosic biomass is also presented in this review. This work also reviews the techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance. An assessment on the emerging application of nanocellulose with an emphasis on development of nanocomposite materials for designing environmentally sustainable products is incorporated. Finally, the status of the industrial production of nanocellulose presented, which indicates that there is a continuously increased demand for cellulose nanomaterials. The demand for cellulose is expected to increase further due to its increasing and broadening applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...