Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Biol Psychiatry ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070846

ABSTRACT

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function. Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless, estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time information, and uncertain network identification. METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants. We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to genomic data. RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and is correlated with genetic risk for schizophrenia. This dysfunction is reflected in regions with weak functional connectivity to corresponding networks. CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

2.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014169

ABSTRACT

Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic connectivity networks (ICNs) from temporal relationships between hemodynamic signals using approaches such as independent component analysis (ICA). While ICNs are thought to represent functional sources that play important roles in various psychological phenomena, current approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships. However, the elements comprising neural systems often exhibit remarkably complex nonlinear interactions that may be involved in cognitive operations and altered in psychiatric conditions such as schizophrenia. Consequently, there is a need to develop methods capable of effectively capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity (ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing us to capture unique information from distance correlation patterns that would be missed by linear whole-brain functional connectivity (LIN-wFC) analysis. Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved by nonlinear processes concentrated within network centers. We also found that a uniquely identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can be gained by incorporating measures that are sensitive to nonlinearity in future analyses. Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-referential processes exhibit heightened sensitivity towards differentiating between individuals with schizophrenia and controls compared to LIN counterparts, demonstrating the translational value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing the landscape of clinical FC analysis.

3.
Hum Mov Sci ; 92: 103139, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703590

ABSTRACT

The haptic sense is an important mode of communication during physical interactions, and it is known to enable humans to estimate key features of their partner's behavior. It is proposed that such estimations are based upon the exchange of information mediated by the interaction forces, resulting in role distribution and coordination between partners. In the present study, we examined whether the information exchange is functionally modified to adapt to the task, or whether it is a fixed process, leaving the adaptation to individual's behaviors. We analyzed the forces during an empirical dyadic interaction task using Granger-Geweke causality analysis, which allowed us to quantify the causal influence of each individual's forces on their partner's. The dynamics of relative phase were also examined. We observed an increase of inter-partner influence with an increase in the spatial accuracy required by the task, demonstrating an adaptation of information flow to the task. This increase of exchange with the spatial accuracy constraint was accompanied by an increase of errors and of the variability of the relative phase between forces. The influence was dominated by participants in a specific role, showing a clear role division as well as task division between the dyad partners. Moreover, the influence occurred in the [2.15-7] Hz frequency band, demonstrating its importance as a frequency band of interest during cooperation involving haptic interaction. Several interpretations are introduced, ranging from sub-division of motion control to phase-amplitude coupling.


Subject(s)
Communication , Humans , Causality
4.
Brain Connect ; 13(2): 97-106, 2023 03.
Article in English | MEDLINE | ID: mdl-36053714

ABSTRACT

Introduction: Video game playing is most often a perceptually and cognitively engaging activity. Players enter into sensory-rich competitive environments, which require them to go from trivial tasks to making active decisions repeatedly and could lend themselves to improve sensorimotor decision-making capabilities. Since video game playing requires moment-to-moment switching of attention from one aspect of sensory information and task to another, enhanced attention control and attention-switching mechanism in the brain can be thought as the neural basis for such improvements. Previous studies have suggested that attention switching is mediated by the salience network (SN). However, how SN interacts with the dorsal attention network (DAN) in active decision-making tasks and whether video game playing modulates these networks remain to be investigated. Methods: Using a modified version of the left-right moving dot motion task in a functional magnetic resonance imaging experiment, we examined the decision response times (dRTs) and functional interactions within and between SN and DAN for video game players (VGPs) and nonvideo game players (NVGPs). Results: We found that VGPs had lower response times for all task conditions and higher decision accuracy for a medium speed setting of moving dots. Associated with this improved task performance in VGPs compared with NVGPs was an increase in DAN to SN connectivity. This SN-DAN connectivity was negatively correlated with dRT. Discussion: These results suggest that enhanced influence of DAN over SN is the brain basis for improved sensorimotor decision-making performance as a result of engaging long term in cognitively challenging and attention-demanding activities such as video game playing. Impact statement Being able to flexibly direct attention is a key factor in sensorimotor decision-making. Video game playing, an attentionally and cognitively engaging activity, can have a beneficial effect on attention and decision-making. Through this study, we examined whether video game players (VGPs) have improved decision-making skills and investigated the brain basis for improvements in a functional magnetic resonance imaging experiment. Brain connectivity from dorsal attention network regions to salience network regions was higher in VGPs and negatively correlated with decision response time for both groups. These results suggest that video game playing can enhance the top-down interaction to improve sensorimotor decision-making.


Subject(s)
Brain , Video Games , Humans , Brain/diagnostic imaging , Brain/physiology , Psychomotor Performance/physiology , Magnetic Resonance Imaging , Reaction Time
5.
Cerebellum ; 21(5): 762-775, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35218525

ABSTRACT

Spatial working memory (SWM) is a cerebrocerebellar cognitive skill supporting survival-relevant behaviors, such as optimizing foraging behavior by remembering recent routes and visited sites. It is known that SWM decision-making in rodents requires the medial prefrontal cortex (mPFC) and dorsal hippocampus. The decision process in SWM tasks carries a specific electrophysiological signature of a brief, decision-related increase in neuronal communication in the form of an increase in the coherence of neuronal theta oscillations (4-12 Hz) between the mPFC and dorsal hippocampus, a finding we replicated here during spontaneous exploration of a plus maze in freely moving mice. We further evaluated SWM decision-related coherence changes within frequency bands above theta. Decision-related coherence increases occurred in seven frequency bands between 4 and 200 Hz and decision-outcome-related differences in coherence modulation occurred within the beta and gamma frequency bands and in higher frequency oscillations up to 130 Hz. With recent evidence that Purkinje cells in the cerebellar lobulus simplex (LS) represent information about the phase and phase differences of gamma oscillations in the mPFC and dorsal hippocampus, we hypothesized that LS might be involved in the modulation of mPFC-hippocampal gamma coherence. We show that optical stimulation of LS significantly impairs SWM performance and decision-related mPFC-dCA1 coherence modulation, providing causal evidence for an involvement of cerebellar LS in SWM decision-making at the behavioral and neuronal level. Our findings suggest that the cerebellum might contribute to SWM decision-making by optimizing the decision-related modulation of mPFC-dCA1 coherence.


Subject(s)
Memory, Short-Term , Spatial Memory , Animals , Cerebellar Cortex , Hippocampus , Memory, Short-Term/physiology , Mice , Prefrontal Cortex/physiology , Spatial Memory/physiology
6.
J Clin Neurophysiol ; 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36731034

ABSTRACT

PURPOSE: To characterize the epilepsy network as reflected in intracranial electroencephalography (iEEG) across the full spectrum of iEEG frequencies and different phases of epilepsy, using a single, conceptually straightforward mathematical measure. METHODS: The authors applied the spectral Granger causality techniques to intracranial electroencephalography recordings and computed contact-by-contact inward, outward, and total causal flow across frequencies and seizure phases in a selected group of three patients with well-defined, nonlesional seizure foci and prolonged responses to invasive procedures. One seizure and one interictal sample were analyzed per subject. RESULTS: A prominent intracranial electroencephalography network was identified by Granger causality at both high and low frequencies. This network persists during the preictal and interictal phases of epilepsy and closely matches the visible seizure onset. The causal inflow network corresponded to seizure onset electrode contacts in 8 of 12 conditions, including ripple, infraslow, preictal, and interictal phases of epilepsy. Its most striking feature is the consistent dominance of causal inflow rather than outflow in the vicinity of the seizure onset zone. CONCLUSIONS: Findings of this study indicate that a stable intracranial electroencephalography epilepsy network persists, and it can be characterized by a single Granger causality measure from infraslow to ripple frequencies and from the interictal to the immediate preictal phases of epilepsy.

7.
Sci Rep ; 11(1): 19036, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561516

ABSTRACT

One of the most complex forms of creativity is musical improvisation where new music is produced in real time. Brain behavior during music production has several dimensions depending on the conditions of the performance. The expression of creativity is suspected to be different whether novel ideas must be externalized using a musical instrument or can be imagined internally. This study explores whole brain functional network connectivity from fMRI data during jazz music improvisation compared against a baseline of prelearned score performance. Given that creativity might be affected by external execution, another dimension where musicians imagine or vocalize the music was also tested. We found improvisation was associated with a state of weak connectivity necessary for attenuated executive control network recruitment associated with a feeling of "flow" allowing unhindered musical creation. In addition, elicited connectivity for sensorimotor and executive control networks is not different whether musicians imagine or externalize (through vocalization) musical performance.


Subject(s)
Brain/physiology , Executive Function/physiology , Music/psychology , Psychomotor Performance , Adult , Brain/diagnostic imaging , Humans , Imagination , Magnetic Resonance Imaging , Male , Singing , Young Adult
8.
Brain Sci ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923597

ABSTRACT

Human cognition and behavior arise from neuronal interactions over brain structural networks. These neuronal interactions cause changes in structural networks over time. How a creative activity such as musical improvisation performance changes the brain structure is largely unknown. In this diffusion magnetic resonance imaging study, we examined the brain's white matter fiber properties in previously identified functional networks and compared the findings between advanced jazz improvisers and non-musicians. We found that, for advanced improvisers compared with non-musicians, the normalized quantitative anisotropy (NQA) is elevated in the lateral prefrontal areas and supplementary motor area, and the underlying white matter fiber tracts connecting these areas. This enhancement of the diffusion anisotropy along the fiber pathway connecting the lateral prefrontal and supplementary motor is consistent with the functional networks during musical improvisation tasks performed by expert jazz improvisers. These findings together suggest that experts' creative skill is associated with the task-relevant, long-timescale brain structural network changes, in support of related cognitive underpinnings.

9.
Neuroimage ; 235: 117989, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33819612

ABSTRACT

It is shown how the brain's linear transfer function provides a means to systematically analyze brain connectivity and dynamics, and to infer connectivity, eigenmodes, and activity measures such as spectra, evoked responses, coherence, and causality, all of which are widely used in brain monitoring. In particular, the Wilson spectral factorization algorithm is outlined and used to efficiently obtain linear transfer functions from experimental two-point correlation functions. The algorithm is tested on a series of brain-like structures of increasing complexity which include time delays, asymmetry, two-dimensionality, and complex network connectivity. These tests are used to verify the algorithm is suitable for application to brain dynamics, specify sampling requirements for experimental time series, and to verify that its runtime is short enough to obtain accurate results for systems of similar size to current experiments. The results can equally well be applied to inference of the transfer function in complex linear systems other than brains.


Subject(s)
Algorithms , Brain/anatomy & histology , Brain/physiology , Evoked Potentials/physiology , Models, Theoretical , Neuroimaging , Electroencephalography , Humans , Magnetic Resonance Imaging
10.
Brain Connect ; 9(3): 296-309, 2019 04.
Article in English | MEDLINE | ID: mdl-30618291

ABSTRACT

Musical improvisation is one of the most complex forms of creative behavior, which offers a realistic task paradigm for the investigation of real-time creativity where revision is not possible. Despite some previous studies on musical improvisation and brain activity, what and how brain areas are involved during musical improvisation are not clearly understood. In this article, we designed a new functional magnetic resonance imaging (fMRI) study, in which, while being in the MRI scanner, advanced jazz improvisers performed improvisatory vocalization and imagery as main tasks and performed a prelearned melody as a control task. We incorporated a musical imagery task to avoid possible confounds of mixed motor and perceptual variables in previous studies. We found that musical improvisation compared with prelearned melody is characterized by higher node activity in the Broca's area, dorsolateral prefrontal cortex, lateral premotor cortex, supplementary motor area and cerebellum, and lower functional connectivity in number and strength among these regions. We discuss various explanations for the divergent activation and connectivity results. These results point to the notion that a human creative behavior performed under real-time constraints is an internally directed behavior controlled primarily by a smaller brain network in the frontal cortex.


Subject(s)
Brain/physiology , Connectome/methods , Music/psychology , Adult , Aged , Brain Mapping/methods , Broca Area/physiology , Creativity , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Motor Cortex/physiology , Prefrontal Cortex/physiology
11.
Front Neurosci ; 12: 837, 2018.
Article in English | MEDLINE | ID: mdl-30524224

ABSTRACT

In the neocortex, communication between neurons is heavily influenced by the activity of the surrounding network, with communication efficacy increasing when population patterns are oscillatory and coherent. Less is known about whether coherent oscillations are essential for conveyance of thalamic input to the neocortex in awake animals. Here we investigated whether visual-evoked oscillations and spikes in the primary visual cortex (V1) were aligned with those in the visual thalamus (dLGN). Using simultaneous recordings of visual-evoked activity in V1 and dLGN we demonstrate that thalamocortical communication involves synchronized local field potential oscillations in the high gamma range (50-90 Hz) which correspond uniquely to precise dLGN-V1 spike synchrony. These results provide evidence of a role for high gamma oscillations in mediating thalamocortical communication in the visual pathway of mice, analogous to beta oscillations in primates.

12.
Data Brief ; 21: 833-851, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30417043

ABSTRACT

Nonparametric methods based on spectral factorization offer well validated tools for estimating spectral measures of causality, called Granger-Geweke Causality (GGC). In Pagnotta et al. (2018) [1] we benchmarked nonparametric GGC methods using EEG data recorded during unilateral whisker stimulations in ten rats; here, we include detailed information about the benchmark dataset. In addition, we provide codes for estimating nonparametric GGC and a simulation framework to evaluate the effects on GGC analyses of potential problems, such as the common reference problem, signal-to-noise ratio (SNR) differences between channels, and the presence of additive noise. We focus on nonparametric methods here, but these issues also affect parametric methods, which can be tested in our framework as well. Our examples allow showing that time reversal testing for GGC (tr-GGC) mitigates the detrimental effects due to SNR imbalance and presence of mixed additive noise, and illustrate that, when using a common reference, tr-GGC unambiguously detects the causal influence׳s dominant spectral component, irrespective of the characteristics of the common reference signal. Finally, one of our simulations provides an example that nonparametric methods can overcome a pitfall associated with the implementation of conditional GGC in traditional parametric methods.

13.
Sci Rep ; 8(1): 15521, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341395

ABSTRACT

Synchronization commonly occurs in many natural and man-made systems, from neurons in the brain to cardiac cells to power grids to Josephson junction arrays. Transitions to or out of synchrony for coupled oscillators depend on several factors, such as individual frequencies, coupling, interaction time delays and network structure-function relation. Here, using a generalized Kuramoto model of time-delay coupled phase oscillators with frequency-weighted coupling, we study the stability of incoherent and coherent states and the transitions to or out of explosive (abrupt, first-order like) phase synchronization. We analytically derive the exact formulas for the critical coupling strengths at different time delays in both directions of increasing (forward) and decreasing (backward) coupling strengths. We find that time-delay does not affect the transition for the backward direction but can shift the transition for the forward direction of increasing coupling strength. These results provide valuable insights into our understanding of dynamical mechanisms for explosive synchronization in presence of often unavoidable time delays present in many physical and biological systems.


Subject(s)
Computer Simulation , Models, Theoretical , Numerical Analysis, Computer-Assisted , Time Factors
14.
Neuroimage ; 183: 478-494, 2018 12.
Article in English | MEDLINE | ID: mdl-30036586

ABSTRACT

Brain function arises from networks of distributed brain areas whose directed interactions vary at subsecond time scales. To investigate such interactions, functional directed connectivity methods based on nonparametric spectral factorization are promising tools, because they can be straightforwardly extended to the nonstationary case using wavelet transforms or multitapers on sliding time window, and allow estimating time-varying spectral measures of Granger-Geweke causality (GGC) from multivariate data. Here we systematically assess the performance of various nonparametric GGC methods in real EEG data recorded over rat cortex during unilateral whisker stimulations, where somatosensory evoked potentials (SEPs) propagate over known areas at known latencies and therefore allow defining fixed criteria to measure the performance of time-varying directed connectivity measures. In doing so, we provide a comprehensive benchmark evaluation of the spectral decomposition parameters that might influence the performance of wavelet and multitaper approaches. Our results show that, under the majority of parameter settings, nonparametric methods can correctly identify the contralateral primary sensory cortex (cS1) as the principal driver of the cortical network. Furthermore, we observe that, when properly optimized, the approach based on Morlet wavelet provided the best detection of the preferential functional targets of cS1; while, the best temporal characterization of whisker-evoked interactions was obtained with a sliding-window multitaper. In addition, we find that nonparametric methods provide GGC estimates that are robust against signal downsampling. Taken together our results provide a range of plausible application values for the spectral decomposition parameters of nonparametric methods, and show that they are well suited to characterize time-varying directed causal influences between neural systems with good temporal resolution.


Subject(s)
Connectome/methods , Electroencephalography/methods , Evoked Potentials, Somatosensory/physiology , Nerve Net/physiology , Signal Processing, Computer-Assisted , Somatosensory Cortex/physiology , Touch Perception/physiology , Animals , Benchmarking , Connectome/standards , Electroencephalography/standards , Models, Animal , Rats , Rats, Wistar , Vibrissae
15.
Neuroimage ; 175: 460-463, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29684646

ABSTRACT

In a recent PNAS article1, Stokes and Purdon performed numerical simulations to argue that Granger-Geweke causality (GGC) estimation is severely biased, or of high variance, and GGC application to neuroscience is problematic because the GGC measure is independent of 'receiver' dynamics. Here, we use the same simulation examples to show that GGC measures, when properly estimated either via the spectral factorization-enabled nonparametric approach or the VAR-model based parametric approach, do not have the claimed bias and high variance problems. Further, the receiver-independence property of GGC does not present a problem for neuroscience applications. When the nature and context of experimental measurements are taken into consideration, GGC, along with other spectral quantities, yield neurophysiologically interpretable results.


Subject(s)
Models, Statistical , Neuroimaging/methods , Computer Simulation , Humans
16.
Brain Connect ; 8(2): 68-81, 2018 03.
Article in English | MEDLINE | ID: mdl-29226709

ABSTRACT

Generating movement rhythms is known to involve a network of distributed brain regions associated with motor planning, control, execution, and perception of timing for the repertoire of motor actions. What brain areas are bound in the network and how the network activity is modulated by rhythmic complexity have not been completely explored. To contribute to answering these questions, we designed a study in which nine healthy participants performed simple to complex rhythmic finger movement tasks while undergoing simultaneous functional magnetic resonance imaging and electroencephalography (fMRI-EEG) recordings of their brain activity during the tasks and rest. From fMRI blood oxygenation-level-dependent (BOLD) measurements, we found that the complexity of rhythms was associated with brain activations in the primary motor cortex (PMC), supplementary motor area (SMA), and cerebellum (Cb), and with network interactions from these cortical regions to the cerebellum. The spectral analysis of single-trial EEG source waveforms at the cortical regions further showed that there were bidirectional interactions between PMC and SMA, and the complexity of rhythms was associated with power spectra and Granger causality spectra in the beta (13-30 Hz) frequency band, not in the alpha (8-12 Hz) and gamma (30-58 Hz) bands. These results provide us new insights into the mechanisms for movement rhythm complexity.


Subject(s)
Brain Waves/physiology , Cerebellum/physiology , Functional Neuroimaging/methods , Motor Activity/physiology , Motor Cortex/physiology , Nerve Net/physiology , Adult , Beta Rhythm/physiology , Cerebellum/diagnostic imaging , Female , Fingers/physiology , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/diagnostic imaging , Nerve Net/diagnostic imaging , Time Factors , Young Adult
17.
Sci Rep ; 7(1): 561, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28373712

ABSTRACT

We here study explosive synchronization transitions and network activity propagation in networks of coupled neurons to provide a new understanding of the relationship between network topology and explosive dynamical transitions as in epileptic seizures and their propagations in the brain. We model local network motifs and configurations of coupled neurons and analyze the activity propagations between a group of active neurons to their inactive neuron neighbors in a variety of network configurations. We find that neuronal activity propagation is limited to local regions when network is highly clustered with modular structures as in the normal brain networks. When the network cluster structure is slightly changed, the activity propagates to the entire network, which is reminiscent of epileptic seizure propagation in the brain. Finally, we analyze intracranial electroencephalography (IEEG) recordings of a seizure episode from a epilepsy patient and uncover that explosive synchronization-like transition occurs around the clinically defined onset of seizure. These findings may provide a possible mechanism for the recurrence of epileptic seizures, which are known to be the results of aberrant neuronal network structure and/or function in the brain.


Subject(s)
Brain/physiology , Nerve Net/physiology , Neurons/physiology , Synaptic Transmission , Brain/physiopathology , Electroencephalography , Epilepsy/physiopathology , Humans , Models, Neurological , Neuronal Plasticity , Seizures/physiopathology
18.
Neuroimage ; 152: 381-389, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28284798

ABSTRACT

Information processing in the human brain during cognitively demanding goal-directed tasks is thought to involve several large-scale brain networks, including the anterior cingulate-insula network (aCIN) and the fronto-parietal network (FPN). Recent functional MRI (fMRI) studies have provided clues that the aCIN initiates activity changes in the FPN. However, when and how often these networks interact remains largely unknown to date. Here, we systematically examined the oscillatory interactions between the aCIN and the FPN by using the spectral Granger causality analysis of reconstructed brain source signals from the scalp electroencephalography (EEG) recorded from human participants performing a face-house perceptual categorization task. We investigated how the aCIN and the FPN interact, what the temporal sequence of events in these nodes is, and what frequency bands of information flow bind these nodes in networks. We found that beta band (13-30Hz) and gamma (30-100Hz) bands of interactions are involved between the aCIN and the FPN during decision-making tasks. In gamma band, the aCIN initiated the Granger causal control over the FPN in 25-225 ms timeframe. In beta band, the FPN achieved a control over the aCIN in 225-425 ms timeframe. These band-specific time-dependent Granger causal controls of the aCIN and the FPN were retained for behaviorally harder decision-making tasks. These findings of times and frequencies of oscillatory interactions in the aCIN and FPN provide us new insights into the general neural mechanisms for sensory information-guided, goal-directed behaviors, including perceptual decision-making processes.


Subject(s)
Brain/physiology , Decision Making/physiology , Visual Perception/physiology , Adult , Beta Rhythm , Cerebral Cortex/physiology , Female , Frontal Lobe/physiology , Gamma Rhythm , Gyrus Cinguli/physiology , Humans , Male , Neural Pathways/physiology , Parietal Lobe/physiology , Young Adult
19.
Brain Connect ; 6(10): 772-785, 2016 12.
Article in English | MEDLINE | ID: mdl-27750434

ABSTRACT

Musical improvisation offers an excellent experimental paradigm for the study of real-time human creativity. It involves moment-to-moment decision-making, monitoring of one's performance, and utilizing external feedback to spontaneously create new melodies or variations on a melody. Recent neuroimaging studies have begun to study the brain activity during musical improvisation, aiming to unlock the mystery of human creativity. What brain resources come together and how these are utilized during musical improvisation are not well understood. To help answer these questions, we recorded electroencephalography (EEG) signals from 19 experienced musicians while they played or imagined short isochronous learned melodies and improvised on those learned melodies. These four conditions (Play-Prelearned, Play-Improvised, Imagine-Prelearned, Imagine-Improvised) were randomly interspersed in a total of 300 trials per participant. From the sensor-level EEG, we found that there were power differences in the alpha (8-12 Hz) and beta (13-30 Hz) bands in separate clusters of frontal, parietal, temporal, and occipital electrodes. Using EEG source localization and dipole modeling methods for task-related signals, we identified the locations and network activities of five sources: the left superior frontal gyrus (L SFG), supplementary motor area (SMA), left inferior parietal lobule (L IPL), right dorsolateral prefrontal cortex, and right superior temporal gyrus. During improvisation, the network activity between L SFG, SMA, and L IPL was significantly less than during the prelearned conditions. Our results support the general idea that attenuated cognitive control facilitates the production of creative output.


Subject(s)
Connectome/psychology , Creativity , Music/psychology , Adult , Brain/physiology , Brain Mapping/methods , Brain Waves , Cognition/physiology , Connectome/methods , Electroencephalography , Female , Humans , Image Processing, Computer-Assisted , Learning/physiology , Magnetic Resonance Imaging , Male , Psychomotor Performance
20.
Brain Connect ; 6(8): 652-661, 2016 10.
Article in English | MEDLINE | ID: mdl-27506256

ABSTRACT

Granger causality (GC) and dynamic causal modeling (DCM) are the two key approaches used to determine the directed interactions among brain areas. Recent discussions have provided a constructive account of the merits and demerits. GC, on one side, considers dependencies among measured responses, whereas DCM, on the other, models how neuronal activity in one brain area causes dynamics in another. In this study, our objective was to establish construct validity between GC and DCM in the context of resting state functional magnetic resonance imaging (fMRI). We first established the face validity of both approaches using simulated fMRI time series, with endogenous fluctuations in two nodes. Crucially, we tested both unidirectional and bidirectional connections between the two nodes to ensure that both approaches give veridical and consistent results, in terms of model comparison. We then applied both techniques to empirical data and examined their consistency in terms of the (quantitative) in-degree of key nodes of the default mode. Our simulation results suggested a (qualitative) consistency between GC and DCM. Furthermore, by applying nonparametric GC and stochastic DCM to resting-state fMRI data, we confirmed that both GC and DCM infer similar (quantitative) directionality between the posterior cingulate cortex (PCC), the medial prefrontal cortex, the left middle temporal cortex, and the left angular gyrus. These findings suggest that GC and DCM can be used to estimate directed functional and effective connectivity from fMRI measurements in a consistent manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...