Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Analyst ; 146(15): 4835-4840, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34198311

ABSTRACT

We introduce analyte-dependent exclusion of reporter reagents from restricted-access adsorbents as the basis of an isocratic reporter-exclusion immunoassay for viruses, proteins, and other analytes. Capto™ Core 700 and related resins possess a noninteracting size-selective outer layer surrounding a high-capacity nonspecific mixed-mode capture adsorbent core. In the absence of analyte, antibody-enzyme reporter conjugates can enter the adsorbent and be captured, and their signal is lost. In the presence of large or artificially-expanded analytes, reporter reagents bind to analyte species to form complexes large enough to be excluded from the adsorbent core, allowing their signal to be observed. This assay principle is demonstrated using M13 bacteriophage virus and human chorionic gonadotropin as model analytes. The simple isocratic detection approach described here allows a rapid implementation of immunoassay for detection of a wide range of analytes and uses inexpensive, generally-applicable, and stable column materials instead of costly analyte-specific immunoaffinity adsorbents.


Subject(s)
Bacteriophage M13 , Chorionic Gonadotropin , Humans , Immunoassay , Indicators and Reagents
2.
PDA J Pharm Sci Technol ; 72(6): 584-598, 2018.
Article in English | MEDLINE | ID: mdl-30030349

ABSTRACT

Chromatography resins used for purifying biopharmaceuticals are generally dedicated to a single product. In good manufacturing practice (GMP) facilities that manufacture a limited amount of any particular product, this practice can result in the resin being used for a fraction of its useful life. A methodology for extending resin reuse to multiple products is described. With this methodology, resin and column performance, product carryover, and cleaning effectiveness are continually monitored to ensure that product quality is not affected by multiproduct resin reuse (MRR). Resin and column performance is evaluated in terms of (a) system suitability parameters, such as peak-shape and transition, and height equivalent theoretical plate (HETP) data; (b) key operating parameters, such as flow rate, inlet pressure, and pressure drop across the column; and (c) process performance parameters, such as impurity profiles, product quality, and yield. Historical data are used to establish process capability limits (PCLs) for these parameters. Operation within the PCLs provides assurance that column integrity and binding capacity of the resin are not affected by MRR.Product carryover defined as the carryover of the previously processed product (A) into a dose of the subsequently processed product (B) (COA→B), should be acceptable from a predictive patient safety standpoint. A methodology for determining COA→B from first principles and setting acceptance limits for cleaning validation is described.Cleaning effectiveness is evaluated by performing a blank elution run after inter-campaign cleaning and prior to product changeover. The acceptance limits for product carryover (COA→B) are more stringent for MRR than for single-product resin reuse. Thus, the inter-campaign cleaning process should be robust enough to consistently meet the more stringent acceptance limits for MRR. Additionally, the analytical methods should be sensitive enough to adequately quantify the concentration of the previously processed product (A) and its degradants in the eluent.General considerations for designing small-scale chromatographic studies for process development are also described. These studies typically include process-cycling runs with multiple products followed by viral clearance studies with a panel of model viruses. Small-scale studies can be used to optimize cleaning parameters, predict resin performance and product quality, and estimate the number of multiproduct purification cycles that can be run without affecting product quality. The proposed methodology is intended to be broadly applicable; however, it is acknowledged that alternative approaches may be more appropriate for specific scenarios.LAY ABSTRACT: Chromatography resins used for purifying biopharmaceuticals are generally dedicated to a single product. In good manufacturing practice (GMP) facilities that make a limited amount of any particular product, this practice can result in the resin being used for a fraction of its useful life. A methodology for extending resin reuse to multiple products is described. With this methodology, resin and column performance, product carryover, and cleaning effectiveness are continually monitored to ensure that product quality is not affected by multiproduct resin reuse.General considerations for designing small-scale chromatographic studies for process development are described. These studies typically include process-cycling runs with multiple products followed by viral clearance studies with a panel of model viruses. Small-scale studies can be used to optimize cleaning parameters, predict resin performance and product quality, and estimate the number of multiproduct purification cycles that can be run without impacting product quality.The proposed methodology is intended to be broadly applicable; however, it is acknowledged that alternative approaches may be more appropriate for specific scenarios.


Subject(s)
Biological Products/standards , Chromatography/methods , Technology, Pharmaceutical/methods , Drug Industry/methods , Equipment Reuse , Recombinant Proteins/standards , Viruses/isolation & purification
3.
Analyst ; 142(17): 3127-3131, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28744542

ABSTRACT

We use single molecule spectroscopy to study a multicomponent, competitive protein adsorption system. Fluorescently-labeled α-lactalbumin proteins are super-resolved adsorbing to cationic anion-exchange ligands in the presence of a competitor, insulin. We find that the competitor reduces the number of binding events by blocking ligands throughout the observed measurement time while the single-site adsorption kinetics are unchanged.


Subject(s)
Anions , Lactalbumin/analysis , Spectrum Analysis , Adsorption , Fluorescence , Kinetics , Ligands
4.
Anal Chem ; 87(23): 11660-5, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26456715

ABSTRACT

We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.


Subject(s)
Aptamers, Peptide/analysis , Aptamers, Peptide/chemistry , Bacteriophage M13/chemistry , Biological Assay , Immunoglobulin E/analysis , Penicillin-Binding Proteins/analysis , Staphylococcus aureus/chemistry
5.
PLoS One ; 10(5): e0126571, 2015.
Article in English | MEDLINE | ID: mdl-25978622

ABSTRACT

Noroviruses are recognized worldwide as the principal cause of acute, non-bacterial gastroenteritis, resulting in 19-21 million cases of disease every year in the United States. Noroviruses have a very low infectious dose, a short incubation period, high resistance to traditional disinfection techniques and multiple modes of transmission, making early, point-of-care detection essential for controlling the spread of the disease. The traditional diagnostic tools, electron microscopy, RT-PCR and ELISA require sophisticated and expensive instrumentation, and are considered too laborious and slow to be useful during severe outbreaks. In this paper we describe the development of a new, rapid and sensitive lateral-flow assay using labeled phage particles for the detection of the prototypical norovirus GI.1 (Norwalk), with a limit of detection of 107 virus-like particles per mL, one hundred-fold lower than a conventional gold nanoparticle lateral-flow assay using the same antibody pair.


Subject(s)
Bacteriophages/metabolism , Biological Assay/methods , Caliciviridae Infections/diagnosis , Caliciviridae Infections/virology , Nanoparticles/metabolism , Norovirus/isolation & purification , Escherichia coli/genetics , Gastroenteritis/diagnosis , Gastroenteritis/virology , Humans , Sensitivity and Specificity , United States
6.
ACS Appl Mater Interfaces ; 7(4): 2891-8, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25581289

ABSTRACT

We demonstrated a lateral flow immunoassay (LFA) for detection of viruses using fluorescently labeled M13 bacteriophage as reporters and single-reporter counting as the readout. AviTag-biotinylated M13 phage were functionalized with antibodies using avidin-biotin conjugation and fluorescently labeled with AlexaFluor 555. Individual phage bound to target viruses (here MS2 as a model) captured on an LFA membrane strip were imaged using epi-fluorescence microscopy. Using automated image processing, we counted the number of bound phage in micrographs as a function of target concentration. The resultant assay was more sensitive than enzyme-linked immunosorbent assays and traditional colloidal-gold nanoparticle LFAs for direct detection of viruses.


Subject(s)
Bacteriophage M13/chemistry , Immunoassay/methods , Viruses/chemistry , Bacteriophage M13/isolation & purification , Biotinylation , Fluorescent Dyes/chemistry , Genes, Reporter , Immunoassay/instrumentation , Staining and Labeling , Viruses/isolation & purification
7.
J Chromatogr A ; 1343: 135-42, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24751557

ABSTRACT

The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins.


Subject(s)
Chromatography, Ion Exchange/methods , Proteins/chemistry , Adsorption , Circular Dichroism , Kinetics , Lactalbumin , Ligands , Osmolar Concentration , Sepharose/chemistry
8.
Proc Natl Acad Sci U S A ; 111(6): 2075-80, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24459184

ABSTRACT

Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.


Subject(s)
Chromatography, Ion Exchange/methods , Proteins/isolation & purification , Stochastic Processes , Adsorption , Kinetics , Lactalbumin/chemistry , Limit of Detection
9.
J Chromatogr A ; 1324: 135-40, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24296294

ABSTRACT

We previously showed that the affinity and capacity of ion exchange adsorbents of a given total charge density are improved by immobilization of the charges in pre-ordered clusters, rather than individually in random locations. This previous work used pentalysinamide and pentaargininamide as clustered ligands. This approach allows close control of cluster size, but is uneconomically expensive for some research and most practical applications. In this work, we demonstrate that the inexpensive synthetic analog of the natural polyamine spermine (H2N-CH2-CH2-CH2-NH-CH2-CH2-CH2-CH2-NH-CH2-CH2-CH2-NH2) also can serve as the basis of effective clustered adsorbents. The calcium-depleted form of the protein α-lactalbumin, and RNA from baker's yeast, were adsorbed on a spermine Sepharose adsorbent. This adsorbent exhibited enhanced α-lactalbumin binding capacity (Qmax>1.6 and 1.3-fold higher than those for Qiagen DEAE and GE DEAE Sepharose adsorbents of much greater charge density) and higher initial binding affinity (Qmax/KD 2.4 and 2.1-fold higher, respectively). The new spermine-based matrix exhibited a higher value of the Z parameter, suggesting an increased number of apparent interaction sites between the protein and the resin, and functioned well in column mode.


Subject(s)
Chromatography, Ion Exchange/instrumentation , Sepharose/chemistry , Spermine/chemistry , Adsorption , Animals , Cattle , Lactalbumin/isolation & purification , Ligands , RNA, Fungal/isolation & purification , Saccharomyces cerevisiae/chemistry
10.
Analyst ; 138(19): 5584-7, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23905160

ABSTRACT

Two types of viral nanoparticles were functionalized with target-specific antibodies and multiple copies of an enzymatic reporter (horseradish peroxidase). The particles were successfully integrated into an immunochromatographic assay detecting MS2 bacteriophage, a model for viral pathogens. The sensitivity of the assay was greatly superior to conventional gold nanoparticle lateral flow assays, and results could easily be evaluated, even without advanced lab instruments.


Subject(s)
Encephalitis Virus, Japanese/chemistry , Levivirus/chemistry , Nanoparticles/analysis , Amino Acid Sequence , Encephalitis Virus, Japanese/genetics , Horseradish Peroxidase/analysis , Humans , Levivirus/genetics , Molecular Sequence Data
11.
Int J Biol Macromol ; 57: 69-75, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23470436

ABSTRACT

The binding of the well-studied DNA aptamer aHt (5'-ATACCAGTCTATTCAATTGGGCCCGTCCGTAT GGTGGGTGTGCTGGCCAG-3'), which has been demonstrated to recognize human vascular endothelial growth factor (VEGF165) to recombinant VEGF was characterized using fluorescence anisotropy, isothermal titration calorimetry and analytical ultracentrifugation. The negatively-charged DNA aptamer is selective for VEGF and does not recognize positively-charged hen egg lysozyme, or bovine serum albumin. In contrast to the VEGF association of the previously-described aV DNA aptamer, where the binding is enthalpically driven and sequence-specific, the binding of the aHt aptamer to VEGF is entropically-driven and not abolished by scrambling of the sequence.


Subject(s)
Aptamers, Nucleotide/chemistry , Vascular Endothelial Growth Factor A/chemistry , Animals , Aptamers, Nucleotide/chemical synthesis , Cattle , Chickens , Humans , Muramidase/chemistry , Serum Albumin, Bovine/chemistry , Vascular Endothelial Growth Factor A/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...