Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PeerJ ; 12: e17497, 2024.
Article in English | MEDLINE | ID: mdl-38832039

ABSTRACT

Human-wildlife conflict (HWC) is a pressing issue worldwide but varies by species over time and place. One of the most prevalent forms of HWC in the mid-hills of Nepal is human-common-leopard conflict (HLC). Leopard attacks, especially in forested areas, can severely impact villagers and their livestock. Information on HLC in the Gorkha district was scarce, thus making it an ideal location to identify high-risk zones and landscape variables associated with such events. Registered cases were collected and reviewed from the Division Forest Office (DFO) during 2019-2021. Claims from DFO records were confirmed with herders and villagers via eight focus group discussions. To enhance modeling success, researchers identified a total of 163 leopard attack locations on livestock, ensuring a minimum distance of at least 100 meters between locations. Using maximum entropy (MaxEnt) and considering 13 environmental variables, we mapped common leopard attack risk zones. True Skill Statistics (TSS) and area under receiver-operator curve (AUC) were used to evaluate and validate the Output. Furthermore, 10 replications, 1,000 maximum iterations, and 1000 background points were employed during modeling. The average AUC value for the model, which was 0.726 ± 0.021, revealed good accuracy. The model performed well, as indicated by a TSS value of 0.61 ± 0.03. Of the total research area (27.92 km2), about 74% was designated as a low-risk area, 19% as a medium-risk area, and 7% as a high-risk area. Of the 13 environmental variables, distance to water (25.2%) was the most significant predictor of risk, followed by distance to road (16.2%) and elevation (10.7%). According to response curves, the risk of common leopard is highest in the areas between 1.5 to 2 km distances from the water sources, followed by the closest distance from a road and an elevation of 700 to 800 m. Results suggest that managers and local governments should employ intervention strategies immediately to safeguard rural livelihoods in high-risk areas. Improvements include better design of livestock corrals, insurance, and total compensation of livestock losses. Settlements near roads and water sources should improve the design and construction of pens and cages to prevent livestock loss. More studies on the characteristics of victims are suggested to enhance understanding of common leopard attacks, in addition to landscape variables. Such information can be helpful in formulating the best management practices.


Subject(s)
Panthera , Animals , Nepal , Humans , Livestock
2.
Ecol Evol ; 14(2): e10949, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371859

ABSTRACT

Himalayan Musk deer, Moschus chrysogaster is widely distributed but one of the least studied species in Nepal. In this study, we compiled a total of 429 current presence points of direct observation of the species, pellets droppings, and hoofmarks based on field-based surveys during 2018-2021 and periodic data held by the Department of National Park and Wildlife Conservation. We developed the species distribution model using an ensemble modeling approach. We used a combination of bioclimatic, anthropogenic, topographic, and vegetation-related variables to predict the current suitable habitat for Himalayan Musk deer in Nepal. A total of 16 predictor variables were used for habitat suitability modeling after the multicollinearity test. The study shows that the 6973.76 km2 (5%) area of Nepal is highly suitable and 8387.11 km2 (6%) is moderately suitable for HMD. The distribution of HMD shows mainly by precipitation seasonality, precipitation of the warmest quarter, temperature ranges, distance to water bodies, anthropogenic variables, and land use and land cover change (LULC). The probability of occurrence is less in habitats with low forest cover. The response curves indicate that the probability of occurrence of HMD decreases with an increase in precipitation seasonality and remains constant with an increase in precipitation of the warmest quarter. Thus, the fortune of the species distribution will be limited by anthropogenic factors like poaching, hunting, habitat fragmentation and habitat degradation, and long-term forces of climate change.

3.
Ecol Evol ; 13(11): e10661, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020685

ABSTRACT

Nepal initiated numerous hydropower and irrigation-related infrastructure projects to enhance and promote green energy, water security, and agricultural productivity. However, these projects may pose risks to natural habitats and the well-being of aquatic fauna, leading to significant effects on delicate ecosystems. To understand these potential impacts, it is crucial to gather reliable baseline data on the population status and habitat characteristics of species. This study specifically focuses on Gharials (Gavialis gangeticus), a critically endangered species. We recorded data on pre-determined habitat variables at stations spaced 500 m apart along the two major river streams of Bardia National Park, as well as at locations where Gharials were sighted between February and March 2023. We used binary logistic regression with a logit link function to investigate the habitat characteristics related to the occurrence of Gharials. The presence/absence of Gharials at sampling points served as the dependent variable, while 10 other predetermined variables (ecological variables and disturbance variables) served as independent variables. Our study recorded 23 Gharials, comprising 14 adults, six sub-adults, and three juveniles, with a sex ratio of 55.56 males per 100 females. Most individuals (83%) were found basking. Among the 10 habitat predictors, three variables (mid-river depth, river width, and water temperature) were significantly correlated (p < .05) with the probability of Gharial occurrence. The model shows that Gharial detection probability increases with greater mid-river depth and width and lower water temperature. This study establishes a population baseline for Gharials within the river system before the construction of large infrastructure projects, such as dams and irrigation canals. It also recommends continuous monitoring of Gharial populations after water release and/or diversion to evaluate the impact of large infrastructure projects on the population and their associated habitat characteristics. This will help enable more informed and targeted conservation efforts.

4.
Heliyon ; 9(6): e16639, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37274642

ABSTRACT

Over the last few years, intensifying human impact and the deterioration of natural habitats have severely restricted the global distribution of large herbivores. Rucervus duvaucelii, commonly recognized as the swamp deer, is a habitat-specialist endemic large herbivore of the Indian Subcontinent. It is classified as vulnerable by the IUCN and listed in CITES Appendix I due to a steep decline in its population, which is primarily due to anthropogenic causes. In Nepal, the last remaining population of this species is confined to limited pocket areas within the western Terai Arc Landscape. We explored potential habitat for swamp deer across this landscape using species distribution modelling through the MaxEnt algorithm by using 173 field-verified presence points alongside six anthropogenic, four topographic, and four vegetation-related variables. Our study found that out of the total study area (9207 km2), only 6% (590 km2) was suitable for swamp deer. Approximately 45% of suitable habitat was incorporated within protected areas, with Shuklaphanta National Park harboring the largest habitat patch. The suitability of habitat was discovered to be positively associated with low-elevation areas, areas near water sources, and areas far from settlements, implying the need to conserve water sources and minimize the extension of anthropogenic pressure for their long-term conservation. Additionally, we suggest the implications of a swamp deer-centric conservation strategy, with an emphasis on increasing connectivity through the corridors and landscape-level population connectivity through trans-boundary conservation initiatives between Nepal and India. Moreover, considering large herbivores' high vulnerability to extinction, similar researche incorporating anthropogenic factors is of the utmost importance to produce vital information on habitat suitability for conserving other regionally and globally endemic, habitat-specialized herbivores.

5.
Animals (Basel) ; 13(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36899794

ABSTRACT

Rapidly changing environmental conditions (bioclimatic, anthropogenic, topographic, and vegetation-related variables) are likely to alter the spatial distribution of flora and fauna. To understand the influence of environmental variables on the Blue bull's distribution and to identify potential conflict zones, the habitat suitability analysis of the Blue bull was performed using ensemble modeling. We modelled the distribution of the Blue bull using an extensive database on the current distribution of the Blue bull and selected 15 ecologically significant environmental variables. We used ten species distribution modeling algorithms available in the BIOMOD2 R package. Among the ten algorithms, the Random Forest, Maxent, and Generalized linear model had the highest mean true skill statistics scores, ensuring better model performance, and were considered for further analysis. We found that 22,462.57 km2 (15.26%) of Nepal is suitable for the Blue bull. Slope, precipitation seasonality, and distance to the road are the environmental variables contributing the most to the distribution of Blue bull. Of the total predicted suitable habitats, 86% lies outside protected areas and 55% overlaps with agricultural land. Thus, we recommend that the future conservation initiatives including appropriate conflict mitigation measures should be prioritized equally in both protected areas and outside protected areas to ensure the species' survival in the region.

6.
Animals (Basel) ; 12(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36230422

ABSTRACT

Forest management practice plays a critical role in conserving biodiversity. However, there are few studies on how forest management practice affects bird communities. Here, we compare the effectiveness of the Panchase Protection Forest (PPF; protected forest with government administration) and the Tibrekot Community Forest (TCF; community forest with community forest users' group administration) in hosting bird diversity in the mid-hills of Nepal. We examined 96 point count stations during summer and winter in 2019 and recorded 160 species of birds with three globally threatened vultures (red-headed vulture Sarcogyps calvus, slender-billed vulture Gyps tenuirostris, and white-rumped vulture Gyps bengalensis). Forest management practice, season, and elevation all influenced the richness and abundance of birds. The diversity, richness, and abundance of birds and the most common feeding guilds (insectivore, omnivore, and carnivore) were higher in TCF than in PPF; however, globally threatened species were only recorded in PPF. We also recorded a higher bird species turnover (beta diversity) in TCF than in PPF. Our study indicates that community-managed forests can also provide quality habitats similar to those of protected forests managed by the government, and provide refuge to various bird species and guilds. However, we recommend more comparative studies in other tropical and sub-tropical areas to understand how different forest management practices influence bird diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...