Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gigascience ; 1(1): 3, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-23587164

ABSTRACT

BACKGROUND: Methylated DNA immunoprecipitation (MeDIP) is a popular enrichment based method and can be combined with sequencing (termed MeDIP-seq) to interrogate the methylation status of cytosines across entire genomes. However, quality control and analysis of MeDIP-seq data have remained to be a challenge. RESULTS: We report genome-wide DNA methylation profiles of wild type (wt) and mutant mouse cells, comprising 3 biological replicates of Thymine DNA glycosylase (Tdg) knockout (KO) embryonic stem cells (ESCs), in vitro differentiated neural precursor cells (NPCs) and embryonic fibroblasts (MEFs). The resulting 18 methylomes were analysed with MeDUSA (Methylated DNA Utility for Sequence Analysis), a novel MeDIP-seq computational analysis pipeline for the identification of differentially methylated regions (DMRs). The observed increase of hypermethylation in MEF promoter-associated CpG islands supports a previously proposed role for Tdg in the protection of regulatory regions from epigenetic silencing. Further analysis of genes and regions associated with the DMRs by gene ontology, pathway, and ChIP analyses revealed further insights into Tdg function, including an association of TDG with low-methylated distal regulatory regions. CONCLUSIONS: We demonstrate that MeDUSA is able to detect both large-scale changes between cells from different stages of differentiation and also small but significant changes between the methylomes of cells that only differ in the KO of a single gene. These changes were validated utilising publicly available datasets and confirm TDG's function in the protection of regulatory regions from epigenetic silencing.

2.
PLoS One ; 5(8): e12339, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20808788

ABSTRACT

It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons ("exon-intron marking"), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.


Subject(s)
Exons/genetics , Histones/metabolism , Introns/genetics , Nucleosomes/genetics , Nucleosomes/metabolism , Gene Expression Regulation , Humans , K562 Cells , RNA Polymerase II/metabolism , Transcription, Genetic
3.
PLoS One ; 5(2): e9059, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20140202

ABSTRACT

The SCL (TAL1) transcription factor is a critical regulator of haematopoiesis and its expression is tightly controlled by multiple cis-acting regulatory elements. To elaborate further the DNA elements which control its regulation, we used genomic tiling microarrays covering 256 kb of the human SCL locus to perform a concerted analysis of chromatin structure and binding of regulatory proteins in human haematopoietic cell lines. This approach allowed us to characterise further or redefine known human SCL regulatory elements and led to the identification of six novel elements with putative regulatory function both up and downstream of the SCL gene. They bind a number of haematopoietic transcription factors (GATA1, E2A LMO2, SCL, LDB1), CTCF or components of the transcriptional machinery and are associated with relevant histone modifications, accessible chromatin and low nucleosomal density. Functional characterisation shows that these novel elements are able to enhance or repress SCL promoter activity, have endogenous promoter function or enhancer-blocking insulator function. Our analysis opens up several areas for further investigation and adds new layers of complexity to our understanding of the regulation of SCL expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation , Proto-Oncogene Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , Acetylation , Binding Sites/genetics , CCCTC-Binding Factor , Cell Line, Tumor , Chromatin Immunoprecipitation , Cluster Analysis , HL-60 Cells , Histones/metabolism , Humans , K562 Cells , Lysine/metabolism , Methylation , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Protein Binding , Repressor Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1 , U937 Cells
4.
Genome Res ; 19(6): 994-1005, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19401398

ABSTRACT

The molecular events that contribute to, and result from, the in vivo binding of transcription factors to their cognate DNA sequence motifs in mammalian genomes are poorly understood. We demonstrate that variations within the DNA sequence motifs that bind the transcriptional repressor REST (NRSF) encode in vivo DNA binding affinity hierarchies that contribute to regulatory function during lineage-specific and developmental programs in fundamental ways. First, canonical sequence motifs for REST facilitate strong REST binding and control functional classes of REST targets that are common to all cell types, whilst atypical motifs participate in weak interactions and control those targets, which are cell- or tissue-specific. Second, variations in REST binding relate directly to variations in expression and chromatin configurations of REST's target genes. Third, REST clearance from its binding sites is also associated with variations in the RE1 motif. Finally, and most surprisingly, weak REST binding sites reside in DNA sequences that show the highest levels of constraint through evolution, thus facilitating their roles in maintaining tissue-specific functions. These relationships have never been reported in mammalian systems for any transcription factor.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Repressor Proteins/metabolism , Base Sequence , Binding Sites/genetics , Binding, Competitive , Cell Line , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA/genetics , DNA-Binding Proteins/genetics , Gene Expression Profiling , HeLa Cells , Humans , Immunoblotting , K562 Cells , RNA, Small Interfering/genetics , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transfection
5.
Nature ; 447(7146): 799-816, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17571346

ABSTRACT

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.


Subject(s)
Genome, Human/genetics , Genomics , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Conserved Sequence/genetics , DNA Replication , Evolution, Molecular , Exons/genetics , Genetic Variation/genetics , Heterozygote , Histones/metabolism , Humans , Pilot Projects , Protein Binding , RNA, Messenger/genetics , RNA, Untranslated/genetics , Transcription Factors/metabolism , Transcription Initiation Site
6.
Genome Res ; 17(6): 691-707, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17567990

ABSTRACT

We generated high-resolution maps of histone H3 lysine 9/14 acetylation (H3ac), histone H4 lysine 5/8/12/16 acetylation (H4ac), and histone H3 at lysine 4 mono-, di-, and trimethylation (H3K4me1, H3K4me2, H3K4me3, respectively) across the ENCODE regions. Studying each modification in five human cell lines including the ENCODE Consortium common cell lines GM06990 (lymphoblastoid) and HeLa-S3, as well as K562, HFL-1, and MOLT4, we identified clear patterns of histone modification profiles with respect to genomic features. H3K4me3, H3K4me2, and H3ac modifications are tightly associated with the transcriptional start sites (TSSs) of genes, while H3K4me1 and H4ac have more widespread distributions. TSSs reveal characteristic patterns of both types of modification present and the position relative to TSSs. These patterns differ between active and inactive genes and in particular the state of H3K4me3 and H3ac modifications is highly predictive of gene activity. Away from TSSs, modification sites are enriched in H3K4me1 and relatively depleted in H3K4me3 and H3ac. Comparison between cell lines identified differences in the histone modification profiles associated with transcriptional differences between the cell lines. These results provide an overview of the functional relationship among histone modifications and gene expression in human cells.


Subject(s)
Genome, Human/physiology , Histones/metabolism , Protein Processing, Post-Translational/physiology , Transcription, Genetic/physiology , HeLa Cells , Humans , K562 Cells
7.
Hum Mol Genet ; 14(22): 3435-47, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16221759

ABSTRACT

We present a detailed in vivo characterization of hepatocyte transcriptional regulation in HepG2 cells, using chromatin immunoprecipitation and detection on PCR fragment-based genomic tiling path arrays covering the encyclopedia of DNA element (ENCODE) regions. Our data suggest that HNF-4alpha and HNF-3beta, which were commonly bound to distal regulatory elements, may cooperate in the regulation of a large fraction of the liver transcriptome and that both HNF-4alpha and USF1 may promote H3 acetylation to many of their targets. Importantly, bioinformatic analysis of the sequences bound by each transcription factor (TF) shows an over-representation of motifs highly similar to the in vitro established consensus sequences. On the basis of these data, we have inferred tentative binding sites at base pair resolution. Some of these sites have been previously found by in vitro analysis and some were verified in vitro in this study. Our data suggests that a similar approach could be used for the in vivo characterization of all predicted/uncharacterized TF and that the analysis could be scaled to the whole genome.


Subject(s)
Base Pairing/genetics , Chromatin Immunoprecipitation , Chromatin/metabolism , Metabolic Diseases/metabolism , Oligonucleotide Array Sequence Analysis , Transcription Factors/metabolism , Binding Sites/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation/methods , Consensus Sequence , Genome, Human , Hepatocyte Nuclear Factor 3-beta/physiology , Hepatocyte Nuclear Factor 4/physiology , Hepatocytes/metabolism , Histones/metabolism , Humans , Oligonucleotide Array Sequence Analysis/methods , Promoter Regions, Genetic , Sequence Analysis, DNA , Transcription Factors/genetics , Upstream Stimulatory Factors/metabolism
8.
Am J Hum Genet ; 76(5): 750-62, 2005 May.
Article in English | MEDLINE | ID: mdl-15756638

ABSTRACT

The development of high-throughput screening methods such as array-based comparative genome hybridization (array CGH) allows screening of the human genome for copy-number changes. Current array CGH strategies have limits of resolution that make detection of small (less than a few tens of kilobases) gains or losses of genomic DNA difficult to identify. We report here a significant improvement in the resolution of array CGH, with the development of an array platform that utilizes single-stranded DNA array elements to accurately measure copy-number changes of individual exons in the human genome. Using this technology, we screened 31 patient samples across an array containing a total of 162 exons for five disease genes and detected copy-number changes, ranging from whole-gene deletions and duplications to single-exon deletions and duplications, in 100% of the cases. Our data demonstrate that it is possible to screen the human genome for copy-number changes with array CGH at a resolution that is 2 orders of magnitude higher than that previously reported.


Subject(s)
Gene Dosage , Genome, Human , Oligonucleotide Array Sequence Analysis/methods , Exons , Female , Gene Deletion , Genetic Diseases, Inborn/genetics , Humans , Male , Nucleic Acid Hybridization , Reproducibility of Results
9.
Genomics ; 79(1): 41-50, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11827456

ABSTRACT

We have recently mapped a locus for hereditary prostate cancer (termed HPCX) to the long arm of the X chromosome (Xq25-q27) through a genome-wide linkage study. Here we report the construction of an approximately 9-Mb sequence-ready bacterial clone contig map of Xq26.3-q27.3. The contig was constructed by screening BAC/PAC libraries with markers spaced at approximately 85-kb intervals. We identified overlapping clones by end-sequencing framework clones to generate 407 new sequence-tagged sites, followed by PCR verification of overlaps. Contig assembly was based on clone restriction fingerprinting and the landmark information. We identified a minimal overlap contig for genomic sequencing, which has yielded 7.7 Mb of finished sequence and 1.5 Mb of draft sequence. The transcriptional mapping effort localized 57 known and predicted genes by database searching, STS content mapping, and sequencing, followed by sequence annotation. These transcriptional units represent candidate genes for HPCX and multiple other hereditary diseases at Xq26.3-q27.3.


Subject(s)
Chromosome Mapping , Prostatic Neoplasms/genetics , X Chromosome/genetics , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, P1 Bacteriophage/genetics , Humans , Male , Molecular Sequence Data , Prostatic Neoplasms/etiology , RNA, Messenger/genetics , Sequence Analysis, DNA , X Chromosome/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...