Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202409963, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934220

ABSTRACT

Herein we have evidenced the formation of favorable π-hole Br···metal noncovalent interactions (NCIs) involving elements from groups 9, 11 and 12. More in detail, M (M = Co2+, Ni2+, Cu2+ and Zn2+) containing porphyrins have been synthesized and their supramolecular assemblies structurally characterized by means of single crystal X-ray diffraction and Hirshfeld surface analyses, revealing the formation of directional Br···M contacts in addition to ancillary hydrogen bond and lone pair-π bonds. Computations at the PBE0-D3/def2-TZVP level of theory revealed the π-hole nature of the Br···M interaction. In addition, the physical nature of these NCIs was studied using Quantum Chemistry methodologies, providing evidence of π-hole Spodium and Regium bonds in Zn2+ and Cu2+ porphyrins, in addition to unveiling the presence of  a π-hole for group 9 (Co2+). On the other hand, group 10 (Ni2+) acted as both electron donor and acceptor moiety without showing an electropositive π-hole. Owing to the underexplored potential of π-hole interactions in transition metal chemistry, we believe the results reported herein will be useful in supramolecular chemistry, organometallics, and solid-state chemistry by i) putting under the spotlight the π-hole chemistry involving first row transition metals and ii) unlocking a new tool to direct the self-assembly of metalloporphyrins.

2.
Chem Asian J ; 17(17): e202200515, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35833469

ABSTRACT

In this study, we report the polymorphism of six coordinated Sn(IV)- tetrabromophenyl porphyrins axially armed with fluorine-substituted phenolate ligands (structural formula [Sn(TBrPP)2+ (A- )2 ], where A is the axial ligand=3,5-difluoro phenol, compound 1). One form stabilizes in triclinic system (namely, 1α), and the other stabilizes in monoclinic system (namely, 1ß). The two 1α and 1ß polymorphs display distinct photophysical and morphological properties in the solid state. X-ray diffraction study reveals that these polymorphs 1α and 1ß significantly differ in their supramolecular architecture, different axial phenolate conformations, and noncovalent interactions, which are responsible for their distinct solid-state properties. The crystal packing of these polymorphs dominates by intermolecular C-H⋅⋅⋅F, C-H⋅⋅⋅π and C-Br⋅⋅⋅F interhalogen interactions. Furthermore, the solid-state emission spectra of 1α showed red-shifted emission bands with respect to 1ß, in addition the redox behavior of 1α is slightly different in comparison to 1ß. Complementary theoretical studies with Hirshfeld surface analysis show the definite role of Br⋅⋅⋅F interhalogen interactions in the overall stability. Mapping the electrostatic potential isosurfaces with the aid of density functional theory in compound 1 clearly shows the presence of σ-hole, a requisite feature to show halogen interactions in the crystalline state. In addition, lattice energy and single point energy calculation shows that 1α was found to be energetically more favorable and thermodynamically more stable compare to 1ß.


Subject(s)
Porphyrins , Ligands , Models, Molecular , Molecular Conformation , Porphyrins/chemistry , Quantum Theory
3.
Phys Chem Chem Phys ; 22(20): 11558-11566, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32395736

ABSTRACT

We demonstrate herein a computational study probing the influence of metalloporphyrins on intermolecular halogen bonding (XB) during supramolecular self-assembly. The results demonstrate that porphyrin aromatic rings can activate or deactivate halogen bonding interactions, especially those on axial ligands, and further influence the preference type of halogen···halogen bonding during the supramolecular self-assembly. Calculations show that the halogen atom present at the equatorial position has a higher sigma hole potential (VS,max) than that at the axial position. The computational analysis and our observations from the X-ray structure analysis are in good agreement. From structural analysis it is clear that equatorial halogen atoms prefer to participate in Type-II XB interactions whereas the axial halogen atoms either participate in Type-I XB interaction or reluctant to participate in XB interactions due to the decrease of their sigma hole potential. Thus, we demonstrate, herein, for the first time a computational study probing the direct influence of the porphyrin's ring current on the sigma hole potential (VS,max) of the halogen atoms and subsequently the effects of the supramolecular self-assembly.

SELECTION OF CITATIONS
SEARCH DETAIL
...