Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Res Microbiol ; 174(8): 104107, 2023.
Article in English | MEDLINE | ID: mdl-37517629

ABSTRACT

Leptospirosis, a global reemerging zoonosis caused by the spirochete Leptospira, has severe human and veterinary implications. Cell wall hydrolase (LIC_10271) with LytM (peptidase M23) and LysM domains are found to be associated with various pathogenic bacteria. These domains regulate effects on extracellular matrix and biofilm components, which promote cell wall remodeling and pathogen dissemination in the host. In this study, we present the cloning, expression, purification, and characterization of LIC_10271. To determine the localization of LIC_10271 within the inner membrane of Leptospira, Triton X-114 subcellular fractionation and immunoblot studies were performed. Furthermore, r-LIC_10271 binds with peptidoglycan, lipopolysaccharide, and laminin in a dose-dependent manner. Analysis of the signal peptide, M23, and LysM domains revealed conservation primarily within the P1 group of Leptospira, which encompasses the most pathogenic species. Moreover, the presence of native-LIC_10271 in the inner membrane and the distribution of M23 and LysM domains across pathogenic strains indicates their potential involvement in the interaction between the host and Leptospira.


Subject(s)
Leptospira interrogans , Leptospira , Humans , Laminin/metabolism , Lipopolysaccharides/metabolism , Peptidoglycan/metabolism , Leptospira interrogans/genetics , Leptospira interrogans/metabolism , Hydrolases/metabolism , Leptospira/genetics , Cell Wall/metabolism , Protein Binding
2.
Article in English | MEDLINE | ID: mdl-35780745

ABSTRACT

Industrial scale production of therapeutic monoclonal antibodies (mAbs) is commonly achieved with Protein A chromatography, a process that requires exposure of the antibody to strongly acidic conditions during the eluting step. Exposure to acid inactivates virus contaminants but may, in parallel, lead to antibody aggregation that must be eliminated or kept at acceptably low levels. This report seeks to provide a practical method for overcoming a long-standing problem. We show how Brij-O20 detergent micelles, conjugated by the amphiphilic [(bathophenanthroline)3:Fe2+] complex in the presence of amino acid monomers: phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp), isoleucine (Ile) or valine (Val), efficiently capture polyclonal human IgG (hIgG) at neutral pH and allow its recovery by extraction either at pH 4 (85-97% yield) or at pH 6.3 (72-84% yield). Of the five amino acid monomers surveyed, Phe or Tyr produced the highest overall process yield at both pH 4 and 6.3. The monomeric state of the purified hIgG's was confirmed by dynamic light scattering (DLS). Potential advantages of the purification method are discussed.


Subject(s)
Amino Acids , Micelles , Detergents , Humans , Hydrogen-Ion Concentration , Immunoglobulin G , Tyrosine
3.
Biotechnol Bioeng ; 119(7): 1997-2003, 2022 07.
Article in English | MEDLINE | ID: mdl-35324016

ABSTRACT

Immunoglobulin M (IgM) antibodies hold promise as anticancer drugs and as agents for promoting immune homeostasis. This promise has not been realized due to low expression levels in mammalian cells producing IgM class antibodies, and the failure of protein A chromatography for IgM purification. Here, we describe a nonchromatographic platform for quantitatively capturing IgMs at neutral pH, which is then recovered with 86%-94% yield and >95% purity at pH 3. The platform contains micelles conjugated with the [(bathophenanthroline)3 :Fe2+ ] amphiphilic complex. Inclusion of amino acid monomers, for example, phenylalanine or tyrosine, during conjugation of detergent micelles, allows subsequent extraction of IgMs at close to neutral pH. With the successful implementation of this purification platform for both polyclonal humans and bovine IgMs, we anticipate similar results for monoclonal IgMs, most relevant for the pharmaceutical industry.


Subject(s)
Detergents , Micelles , Animals , Antibodies, Monoclonal/metabolism , Cattle , Humans , Immunoglobulin M/metabolism , Mammals/metabolism , Staphylococcal Protein A
4.
Sci Rep ; 11(1): 11697, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083598

ABSTRACT

The research described in this report seeks to present proof-of-concept for a novel and robust platform for purification of antibody fragments and to define and optimize the controlling parameters. Purification of antigen-binding F(ab')2 fragments is achieved in the absence of chromatographic media or specific ligands, rather by using clusters of non-ionic detergent (e.g. Tween-60, Brij-O20) micelles chelated via Fe2+ ions and the hydrophobic chelator, bathophenanthroline (batho). These aggregates, quantitatively capture the F(ab')2 fragment in the absence or presence of E. coli lysate and allow extraction of only the F(ab')2 domain at pH 3.8 without concomitant aggregate dissolution or coextraction of bacterial impurities. Process yields range from 70 to 87% by densitometry. Recovered F(ab')2 fragments are monomeric (by dynamic light scattering), preserve their secondary structure (by circular dichroism) and are as pure as those obtained via Protein A chromatography (from a mixture of F(ab')2 and Fc fragments). The effect of process parameters on Ab binding and Ab extraction (e.g. temperature, pH, ionic strength, incubation time, composition of extraction buffer) are reported, using a monoclonal antibody (mAb) and polyclonal human IgG's as test samples.


Subject(s)
Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fragments/metabolism , Staphylococcal Protein A/chemistry , Antibodies, Monoclonal/chemistry , Chromatography, Affinity , Escherichia coli/metabolism , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Micelles
5.
N Biotechnol ; 61: 90-98, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33279718

ABSTRACT

We have recently described a non-chromatographic, ligand-free approach for antibody (Ab) purification based on specially designed [Tween-20:bathophenanthroline:Fe2+] aggregates. To assess the potential generality of this approach, a variety of detergents belonging to four nonionic detergent families (Tween, Brij, Triton and Pluronic) have now been studied. All surfactant aggregates led to high purity of the recovered Ab's (>95 %, by gel densitometry). Good overall Ab recovery yields were observed with Tween-20 (80-83 %), Brij-O20 (85-87 %) and Triton X-100 (87-90 %), while Pluronic F-127 was less efficient (42-53 %). Of additional importance is the finding that the process was performed by filtration rather than centrifugation, thereby allowing a continuous purification mode that led to the recovery of monomeric IgG, as determined by dynamic light scattering and preservation of Ab specificity as measured by ELISA. The amphiphilic chelator, bathophenanthroline (batho) was recycled almost quantitatively (95 %) by crystallization. Good IgG recovery yields of ∼80 % were also observed when Ab concentrations were increased from 1 mg/mL to 3-5 mg/mL. Potential advantages of the purification platform for industrial downstream processing of therapeutic monoclonal antibodies, are discussed.


Subject(s)
Antibodies/isolation & purification , Detergents/chemistry , Staphylococcal Protein A/chemistry , Antibodies/chemistry , Chromatography , Ferrous Compounds/chemistry , Ligands , Micelles , Molecular Structure , Phenanthrolines/chemistry , Polysorbates/chemistry
6.
Proteomics ; 20(19-20): e2000170, 2020 10.
Article in English | MEDLINE | ID: mdl-32846045

ABSTRACT

The Triton X-114-based solubilization and temperature-dependent phase separation of proteins is used for subcellular fractionation where, aqueous, detergent, and pellet fractions represents cytoplasmic, outer membrane (OM), and inner membrane proteins, respectively. Mass spectrometry-based proteomic analysis of Triton X-114 fractions of proteomic analysis of Leptospira interrogans identified 2957 unique proteins distributed across the fractions. The results are compared with bioinformatics predictions on their subcellular localization and pathogenic nature. Analysis of the distribution of proteins across the Triton X-114 fractions with the predicted characteristics is performed based on "number" of unique type of proteins, and "quantity" which represents the amount of unique protein. The highest number of predicted outer membrane proteins (OMPs) and pathogenic proteins are found in aqueous and pellet fractions, whereas detergent fraction representing the OM has the highest quantity of OMPs and pathogenic proteins though lower in number than the aqueous and pellet fractions. This leaves the possibility of an upsurge in pathogenic proteins and OMPs on the OM under pathogenic conditions suggesting their potential use to combat leptospirosis. Further, the Triton X-114 subcellular fractions are more correlated to enrichment of pathogenic proteins predicted by MP3 software than predicted localization.


Subject(s)
Leptospira interrogans , Octoxynol , Proteomics , Bacterial Outer Membrane Proteins , Detergents , Proteome
7.
Article in English | MEDLINE | ID: mdl-31704445

ABSTRACT

We have recently introduced a non-chromatographic alternative for antibody (Ab) purification, one which does not require the use of Protein A. With this approach, polyclonal human or mouse immunoglobulins (IgG's) are captured almost quantitatively by Tween-20 micelles conjugated with a [chelator:divalent metal cation] complex. Target IgG structure remains native even following extraction from the surfactant aggregate. In the present work, we explore the effect of varying both components of the [metal:chelator] pair on the yield of purified Ab. Capture efficiency is observed to correlate with the formation of sufficiently large detergent aggregates, as determined by dynamic light scattering (DLS) and polyacrylamide gel electrophoresis (PAGE). This, in turn, depends on the rigidity and aromaticity of the chelator. Detergent aggregates are stable over a wide range of pH values (pH = 3-9). Under acidic conditions (3-3.8) they lead to good IgG recovery yields (70-78%) with purity similar to that obtained with Protein A chromatography while maintaining the monomeric state of the IgG's. Finally, the influence of the environment and the presence of various water-soluble chelators (e.g. EDTA, histidine, imidazole) on process efficiency, is described.


Subject(s)
Chelating Agents/chemistry , Immunoglobulin G/isolation & purification , Metals/chemistry , Animals , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen-Ion Concentration , Mice , Micelles , Polysorbates , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism
8.
J Pept Sci ; 25(6): e3174, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31140721

ABSTRACT

We report the first demonstration of nonionic detergent micelle conjugation and phase separation using purpose-synthesized, peptide amphiphiles, C10 -(Asp)5 and C10 -(Lys)5 . Clustering is achieved in two different ways. Micelles containing the negatively charged peptide amphiphile C10 -(Asp)5 are conjugated (a) via a water-soluble, penta-Lys mediator or (b) to micelles containing the C10 -(Lys)5 peptide amphiphile. Both routes lead to phase separation in the form of oil-rich globules visible in the light microscope. The hydrophobic nature of these regions leads to spontaneous partitioning of hydrophobic dyes into globules that were found to be stable for weeks to months. Extension of the conjugation mechanism to micelles containing a recently discovered, light-driven proton pump King Sejong 1-2 (KS1-2) demonstrates that a membrane protein may be concentrated using peptide amphiphiles while preserving its native conformation as determined by characteristic UV absorption. The potential utility of these peptide amphiphiles for biophysical and biomedical applications is discussed.


Subject(s)
Peptides/chemistry , Proton Pumps/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Micelles , Microscopy , Water
9.
MAbs ; 11(3): 583-592, 2019 04.
Article in English | MEDLINE | ID: mdl-30618334

ABSTRACT

We introduce a new concept and potentially general platform for antibody (Ab) purification that does not rely on chromatography or specific ligands (e.g., Protein A); rather, it makes use of detergent aggregates capable of efficiently capturing Ab while rejecting hydrophilic impurities. Captured Ab are then extracted from the aggregates in pure form without co-extraction of hydrophobic impurities or aggregate dissolution. The aggregates studied consist of conjugated "Engineered-micelles" built from the nonionic detergent, Tween-20; bathophenanthroline, a hydrophobic metal chelator, and Fe2+ions. When tested in serum-free media with or without bovine serum albumin as additive, human or mouse IgGs were recovered with good overall yields (70-80%, by densitometry). Extraction of IgGs with 7 different buffers at pH 3.8 sheds light on possible interactions between captured Ab and their surrounding detergent matrix that lead to purity very similar to that obtained via Protein A or Protein G resins. Extracted Ab preserve their secondary structure, specificity and monomeric character as determined by circular dichroism, enzyme-linked immunosorbent assay and dynamic light scattering, respectively.


Subject(s)
Immunoglobulin G/isolation & purification , Micelles , Animals , Humans , Immunoglobulin G/chemistry , Mice , Serum Albumin, Bovine/chemistry
10.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 712-721, 2018.
Article in English | MEDLINE | ID: mdl-29654978

ABSTRACT

Leptospira, the causative agent of leptospirosis is known to have many proteases with potential to degrade extracellular matrix. However, a multipronged approach to identify, classify, characterize and elucidate their role has not been attempted. Our proteomic approach using high-resolution LC-MS/MS analysis of Triton X-114 fractions of Leptospira interrogans resulted in the identification of 104 proteases out of 130 proteases predicted by MEROPS. In Leptospira approximately 3.5% of the genome complements for proteases, which include catalytic types of metallo-, serine-, cysteine-, aspartic-, threonine- and asparagine- peptidases. Comparison of proteases from different serovars revealed that M04, M09B, M14A, M75, M28A, A01 and U73 protease families are exclusively present in pathogenic form. The M23 and S33 protease families are represented with >14 members in Leptospira. The differential expression under physiological temperature (37 °C) and osmolarity (300 mOsM) showed that proteases belonging to the catalytic type of Metallo-peptidases are upregulated significantly in pathogenic conditions. In silico prediction and characterization of the proteases revealed that several proteases are membrane anchored and secretory, classical as well as non-classical system. The study demonstrates the diversity and complexity of proteases, while maintaining conservation across the serovars in Leptospira and their differential expression under pathogenic conditions.


Subject(s)
Bacterial Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Leptospira interrogans/enzymology , Peptide Hydrolases/metabolism , Proteomics/methods , Bacterial Proteins/genetics , Chromatography, Liquid , Computational Biology , Enzyme Stability , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Leptospira interrogans/genetics , Osmolar Concentration , Peptide Hydrolases/genetics , Phylogeny , Substrate Specificity , Tandem Mass Spectrometry , Temperature
11.
Proteins ; 86(7): 712-722, 2018 07.
Article in English | MEDLINE | ID: mdl-29633350

ABSTRACT

Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Leptospira/chemistry , Proteome , Bacterial Outer Membrane Proteins/metabolism , Biological Transport , Databases, Protein , Leptospira/metabolism , Lipoproteins/metabolism
12.
Mol Biosyst ; 13(5): 883-891, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28294222

ABSTRACT

Leptospirosis, a potentially life-threatening disease, remains the most widespread zoonosis caused by pathogenic species of Leptospira. The pathogenic spirochaete, Leptospira interrogans, is characterized by its ability to permeate human host tissues rapidly and colonize multiple organs in the host. In spite of the efforts taken to comprehend the pathophysiology of the pathogen and the heterogeneity posed by L. interrogans, the current knowledge on the mechanism of pathogenesis is modest. In an attempt to contribute towards the same, we demonstrate the use of an established structure-based protocol coupled with information on subcellular localization of proteins and their tissue-specificity, in recognizing a set of 49 biologically feasible interactions potentially mediated by proteins of L. interrogans in humans. We have also presented means to adjudge the physicochemical viability of the predicted host-pathogen interactions, for selected cases, in terms of interaction energies and geometric shape complementarity of the interacting proteins. Comparative analyses of proteins of L. interrogans and the saprophytic spirochaete, Leptospira biflexa, and their predicted involvement in interactions with human hosts, aided in underpinning the functional relevance of leptospiral-host protein-protein interactions specific to L. interrogans as well as those specific to L. biflexa. Our study presents characteristics of the pathogenic L. interrogans that are predicted to facilitate its ability to persist in human hosts.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Leptospira/physiology , Leptospirosis/metabolism , Computational Biology/methods , Genome, Bacterial , Host-Pathogen Interactions , Humans , Leptospira/classification , Leptospira/genetics , Leptospira/metabolism , Leptospirosis/microbiology , Models, Molecular , Organ Specificity , Protein Binding , Protein Conformation , Protein Interaction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...