Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 1082802, 2022.
Article in English | MEDLINE | ID: mdl-36699459

ABSTRACT

Introduction: In India, crossbred cows incorporate the high production of B. taurus dairy breeds and the environmental adaptation of local B. indicus cattle. Adaptation to different environments and selection in milk production have shaped the genetic differences between B. indicus and B. taurus cattle. The aim of this paper was to detect, for milk yield of crossbred cows, quantitative trait loci (QTL) that differentiate B. indicus from B. taurus ancestry, as well as QTL that are segregating within the ancestral breeds. Methods: A total of 123,042 test-day milk records for 4,968 crossbred cows, genotyped with real and imputed 770 K SNP, were used. Breed origins were assigned to haplotypes of crossbred cows, and from that, were assigned to SNP alleles. Results: At a false discovery rate (FDR) of 30%, a large number of genomic regions showed significant effects of B. indicus versus B. taurus origin on milk yield, with positive effects coming from both ancestors. No significant regions were detected for Holstein Friesian (HF) versus Jersey effects on milk yield. Additionally, no regions for SNP alleles segregating within indigenous, within HF, and within Jersey were detected. The most significant effects, at FDR 5%, were found in a region on BTA5 (43.98-49.44 Mbp) that differentiates B. indicus from B. taurus, with an estimated difference between homozygotes of approximately 10% of average yield, in favour of B. indicus origin. Discussion: Our results indicate that evolutionary differences between B. indicus and B. taurus cattle for milk yield, as expressed in crossbred cows, occur at many causative loci across the genome. Although subject to the usual first estimation bias, some of the loci appear to have large effects that might make them useful for genomic selection in crossbreds, if confirmed in subsequent studies.

2.
Nat Commun ; 11(1): 4739, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958756

ABSTRACT

More people globally depend on the water buffalo than any other domesticated species, and as the most closely related domesticated species to cattle they can provide important insights into the shared evolutionary basis of domestication. Here, we sequence the genomes of 79 water buffalo across seven breeds and compare patterns of between breed selective sweeps with those seen for 294 cattle genomes representing 13 global breeds. The genomic regions under selection between cattle breeds significantly overlap regions linked to stature in human genetic studies, with a disproportionate number of these loci also shown to be under selection between water buffalo breeds. Investigation of potential functional variants in the water buffalo genome identifies a rare example of convergent domestication down to the same mutation having independently occurred and been selected for across domesticated species. Cross-species comparisons of recent selective sweeps can consequently help identify and refine important loci linked to domestication.


Subject(s)
Buffaloes/genetics , Cattle/genetics , Domestication , Genome/genetics , Animals , Breeding , Buffaloes/classification , Cattle/classification , Evolution, Molecular , Genetic Loci/genetics , Genetic Variation , Phenotype , Phylogeography , Selection, Genetic
3.
Front Genet ; 10: 668, 2019.
Article in English | MEDLINE | ID: mdl-31428126

ABSTRACT

The domestic water buffalo (Bubalus bubalis) makes a major contribution to the global agricultural economy in the form of milk, meat, hides, and draught power. The global water buffalo population is predominantly found in Asia, and per head of population more people depend upon the buffalo than on any other livestock species. Despite its agricultural importance, there are comparatively fewer genomic and transcriptomic resources available for buffalo than for other livestock species. We have generated a large-scale gene expression atlas covering multiple tissue and cell types from all major organ systems collected from three breeds of riverine water buffalo (Mediterranean, Pandharpuri and Bhadawari) and used the network analysis tool Graphia Professional to identify clusters of genes with similar expression profiles. Alongside similar data, we and others have generated for ruminants as part of the Functional Annotation of Animal Genomes Consortium; this comprehensive transcriptome supports functional annotation and comparative analysis of the water buffalo genome.

4.
Epigenetics ; 7(5): 492-501, 2012 May.
Article in English | MEDLINE | ID: mdl-22419123

ABSTRACT

Mastitis is a multietiological complex disease, defined as inflammation of parenchyma of mammary glands. Bacterial infection is the predominant cause of mastitis, though fungal, viral and mycoplasma infections also have been reported. Based on the severity of the disease, mastitis can be classified into subclinical, clinical and chronic forms. Bacterial pathogens from fresh cow milk were isolated and classified by standard microbiological tests and multiplex PCR. Epidemiological studies have shown that Escherichia coli is the second largest mastitis pathogen after Staphylococcus aureus in India. Based on Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR profile and presence of virulence genes, a field isolate of E. coli was used for intramammary inoculation in lactating mice. Histopathological examination of hematoxylin and eosin stained sections showed severe infiltration of polymorphonuclear neutrophils, mononuclear inflammatory cells in the alveolar lumen and also in interstitial space, and necrosis of alveolar epithelial cells after 24 h. Western blot and immunohistochemical analysis of mice mammary tissues showed significant hyperacetylation at histone H3K14 residue of both mammary epithelial cells and migrated inflammatory cells. Quantitative real-time PCR and genome-wide gene expression profile in E. coli infected mice mammary tissue revealed differential expression of genes related to inflammation, immunity, antimicrobial peptide expression, acute phase response and oxidative stress response. Expression of milk proteins was also suppressed. ChIP assay from paraffinized tissues showed selective enrichment of acetylated histone H3K14 and H4K8 at the promoters of overexpressed genes. These data suggest that E. coli infection in mice mammary tissue leads to histone hyperacetylation at the promoter of immune genes, which is a pre-requisite for the expression of inflammatory genes in order to mount a drastic immune response.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/pathogenicity , Histones/metabolism , Mammary Glands, Animal/microbiology , Mastitis/microbiology , Acetylation , Animals , Blotting, Western , Chromatin Immunoprecipitation , Epithelial Cells/immunology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Female , Gene Expression Regulation , Histones/genetics , Immunohistochemistry , Lactation/metabolism , Mastitis/immunology , Mice , Milk/immunology , Milk/metabolism , Milk/microbiology , Neutrophils/immunology , Neutrophils/microbiology , Neutrophils/pathology , Oxidative Stress , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...