Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 115: 163-173, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28371690

ABSTRACT

Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (AsIII) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of AsIII on plant growth. Nitric oxide supplementation to AsIII treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether AsIII was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for AsIII uptake. The endogenous level of NO and SA were positively correlated to each other either when AsIII was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in AsIII stressed plants.


Subject(s)
Arsenites/toxicity , Nitric Oxide/metabolism , Oryza/drug effects , Oryza/metabolism , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Hydroponics , Iron/metabolism , Nitric Oxide/pharmacology , Seedlings
2.
Arch Environ Contam Toxicol ; 64(2): 235-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23138651

ABSTRACT

Thiol metabolism is the primary detoxification strategy by which rice plants tolerate arsenic (As) stress. In light of this, it is important to understand the importance of harmonised thiol metabolism with As accumulation and tolerance in rice plant. For this aim, tolerant (T) and sensitive (S) genotypes were screened from 303 rice (Oryza sativa) genotypes on exposure to 10 and 25 µM arsenite (As(III)) in hydroponic culture. On further As accumulation estimation, contrasting (13-fold difference) T (IC-340072) and S (IC-115730) genotypes were selected. This difference was further evaluated using biochemical and molecular approaches to understand involvement of thiolic metabolism vis-a-vis As accumulation in these two genotypes. Various phytochelatin (PC) species (PC(2), PC(3) and PC(4)) were detected in both the genotypes with a dominance of PC(3). However, PC concentrations were greater in the S genotype, and it was noticed that the total PC (PC(2) + PC(3 )+ PC(4))-to-As(III) molar ratio (PC-SH:As(III)) was greater in T (2.35 and 1.36 in shoots and roots, respectively) than in the S genotype (0.90 and 0.15 in shoots and roots, respectively). Expression analysis of several metal(loid) stress-related genes showed significant upregulation of glutaredoxin, sulphate transporter, and ascorbate peroxidase in the S genotype. Furthermore, enzyme activity of phytochelatin synthase and cysteine synthase was greater on As accumulation in the S compared with the T genotype. It was concluded that the T genotype synthesizes adequate thiols to detoxify metalloid load, whereas the S genotype synthesizes greater but inadequate levels of thiols to tolerate an exceedingly greater load of metalloids, as evidenced by thiol-to-metalloid molar ratios, and therefore shows a phytotoxicity response.


Subject(s)
Adaptation, Physiological/physiology , Arsenites/toxicity , Oryza/physiology , Soil Pollutants/toxicity , Sulfhydryl Compounds/metabolism , Aminoacyltransferases/metabolism , Gene Expression Regulation, Plant , Phytochelatins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...