Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Fish Dis ; : e13941, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38523339

ABSTRACT

The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.

2.
J Virol Methods ; 323: 114840, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989459

ABSTRACT

Decapod Penstylhamaparvovirus 1, commonly known as infectious hypodermal and hematopoietic necrosis virus (IHHNV), remains an economically important viral pathogen for penaeid shrimp aquaculture due to its effects on growth performance. The World Organization for Animal Health (WOAH, Paris, France) recommended methods for the detection of IHHNV include both conventional and real-time PCR. However, published reports and anecdotal evidence suggest the occurrence of non-specific amplifications when testing for IHHNV using the WOAH protocols. Studies were designed to develop a sensitive, robust TaqMan PCR method for detection of IHHNV in the three commercially important penaeid shrimp: Penaeus vannamei, P. monodon and P. stylirostris. We compared the performance of the WOAH-recommended real-time PCR method to several published as well as in-house designed primer/probe sets spanning the entire genome of IHHNV. Our results show that (1) more than one primer/ probe set is needed when testing for the infectious form of IHHNV in all three species of shrimp and (2) primer pairs qIH-Fw/qIH-Rv and 3144F/ 3232R have diagnostic characteristics that would enable IHHNV detection in all three shrimp species. These findings are valuable for a large-scale screening of shrimp using a TaqMan real-time PCR assay.


Subject(s)
Densovirinae , Penaeidae , Animals , Densovirinae/genetics , Real-Time Polymerase Chain Reaction/methods
3.
PNAS Nexus ; 2(9): pgad278, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693213

ABSTRACT

Viral disease pandemics are a major cause of economic losses in crustacean farming worldwide. While RNA interference (RNAi)-based therapeutics have shown promise at a laboratory scale, without an effective oral delivery platform, RNA-based therapy will not reach its potential against controlling viral diseases in crustaceans. Using a reverse-engineered shrimp RNA virus, Macrobrachium rosenbergii nodavirus (MrNV), we have developed a shrimp viral vector for delivering an engineered RNA cargo. By replacing the RNA-dependent RNA polymerase (RdRp) protein-coding region of MrNV with a cargo RNA encoding green fluorescent protein (GFP) as a proof-of-concept, we generated a replication-incompetent mutant MrNV(ΔRdRp) carrying the GFP RNA cargo resulting in MrNV(ΔRdRp)-GFP. Upon incorporating MrNV(ΔRdRp)-GFP in the diet of the marine Pacific white shrimp (Penaeus vannamei), MrNV(ΔRdRp) particles were visualized in hemocytes demonstrating successful vector internalization. Fluorescence imaging of hemocytes showed the expression of GFP protein and the MrNV capsid RNA (RNA2) as well as the incorporated GFP RNA cargo. Detection of cargo RNA in hepatopancreas and pleopods indicated the systemic spread of the viral vector. The quantitative load of both the MrNV RNA2 and GFP RNA progressively diminished within 8 days postadministration of the viral vector, which indicated a lack of MrNV(ΔRdRp)-GFP replication in shrimp. In addition, no pathological hallmarks of the wild-type MrNV infection were detected using histopathology in the target tissue of treated shrimp. The data unequivocally demonstrated the successful engineering of a replication-incompetent viral vector for RNA delivery, paving the way for the oral delivery of antiviral therapeutics in farmed crustaceans.

4.
J Invertebr Pathol ; 200: 107968, 2023 09.
Article in English | MEDLINE | ID: mdl-37429540

ABSTRACT

Microsporidia are emerging intracellular parasites of most known animal phyla in all ecological niches. In shrimp aquaculture, the microsporidium Enterocytozoon hepatopenaei (EHP) is a major cause of concern inflicting tremendous losses to shrimp producers in southeast Asia. During a histopathological examination of Penaeus vannamei samples originating in a country from Latin America presenting slow growth, we observed abnormal nuclei in the epithelial cells of the hepatopancreas. A PCR screening of the samples using DNA isolated from paraffin embedded tissues for the SSU rRNA gene of EHP provided a 149 bp amplicon. In situ hybridization using the SSU rRNA gene probe provided a positive signal in the nuclei instead of the cytoplasm. Sequence analysis of the SSU rRNA gene product revealed a 91.3 %, 89.2 % and 85.4 % sequence identity to Enterocytozoon bieneusi, E. hepatopenaei and Enterospora canceri respectively. Furthermore, phylogenetic analysis revealed the newly discovered microsporidium clustered with E. bieneusi. Considering the intranuclear location of the novel microsporidium and the differences in the sequence of the SSU rRNA, we tentatively consider this parasite a new member of the genus Enterospora sp. The pathogenicity and distribution of the shrimp Enterospora sp. are currently unknown. Our future efforts are focused on the characterization and development of diagnostic tools for this parasite to understand if it acts as an emergent pathogen that might require surveillance to prevent its spread.


Subject(s)
Enterocytozoon , Microsporidia, Unclassified , Penaeidae , Animals , Microsporidia, Unclassified/genetics , Penaeidae/parasitology , Latin America , Phylogeny , Enterocytozoon/genetics , RNA, Ribosomal
5.
Appl Environ Microbiol ; 89(6): e0215122, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37219435

ABSTRACT

Timely detection of persistent and emerging pathogens is critical to controlling disease spread, particularly in high-density populations with increased contact between individuals and limited-to-no ability to quarantine. Standard molecular diagnostic tests for surveying pathogenic microbes have provided the sensitivity needed for early detection, but lag in time-to-result leading to delayed action. On-site diagnostics alleviate this lag, but current technologies are less sensitive and adaptable than lab-based molecular methods. Towards the development of improved on-site diagnostics, we demonstrated the adaptability of a loop-mediated isothermal amplification-CRISPR coupled technology for detecting DNA and RNA viruses that have greatly impacted shrimp populations worldwide; White Spot Syndrome Virus and Taura Syndrome Virus. Both CRISPR-based fluorescent assays we developed showed similar sensitivity and accuracy for viral detection and load quantification to real-time PCR. Additionally, both assays specifically targeted their respective virus with no false positives detected in animals infected with other common pathogens or in certified specific pathogen-free animals. IMPORTANCE The Pacific white shrimp (Penaeus vannamei) is one of the most valuable aquaculture species in the world but has suffered major economic losses from outbreaks of White Spot Syndrome Virus and Taura Syndrome Virus. Rapid detection of these viruses can improve aquaculture practices by enabling more timely action to be taken to combat disease outbreaks. Highly sensitive, specific, and robust CRISPR-based diagnostic assays such as those developed here have the potential to revolutionize disease management in agriculture and aquaculture helping to promote global food security.


Subject(s)
Penaeidae , RNA Viruses , Animals , Sensitivity and Specificity , RNA Viruses/genetics , DNA , RNA
6.
Viruses ; 14(10)2022 10 09.
Article in English | MEDLINE | ID: mdl-36298775

ABSTRACT

The emergence and spread of disease-causing viruses in shrimp aquaculture is not uncommon. Since 2016, unusual mortalities have been affecting the Brazilian shrimp industry and we have associated these unusual mortalities with a novel variant of infectious myonecrosis virus (IMNV). The transcriptome analysis of these diseased shrimp showed an additional divergent viral sequence that we have assigned to the family Solinviviridae. The novel virus has been tentatively termed Penaeus vannamei solinvivirus (PvSV) (GenBank accession: OP265432). The full-length genome of the PvSV is 10.44 kb (excluding the poly A tail) and codes for a polyprotein of 3326 aa. Five conserved domains coding for a helicase, RdRp, calicivirus coat protein, G-patch and tegument protein were identified. The genome organization of the PvSV is similar to other (Nylan deria fulva virus 1) solinvivirus. A unique feature of this virus that differs from other members of the Solinviviridae is the presence of putative nuclear localization signals. The tissue tropism of this virus is wide, infecting cells of the hepatopancreas, gastrointestinal tract, lymphoid organ and muscle tissue. Another unique feature is that it is the only RNA virus of penaeid shrimp that shows a nuclear localization by in situ hybridization. The PvSV has a wide distribution in Brazil and has been found in the states of Maranhão State (Perizes de Baixo), Piaui State (Mexeriqueira), Ceará State (Camocim, Jaguaruana, Aracati and Alto Santo) and Pará State where it has been detected in coinfections with IMNV. The diagnostic methods developed here (real-time RT-PCR and in situ hybridization) are effective for the detection of the pathogen and should be employed to limit its spread. Furthermore, the identification of the PvSV shows the increasing host range of the relatively new family Solinviviridae.


Subject(s)
Penaeidae , RNA Viruses , Animals , Nuclear Localization Signals , RNA Viruses/genetics , RNA-Dependent RNA Polymerase , Polyproteins , Poly A
7.
Sci Rep ; 12(1): 14766, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042348

ABSTRACT

The microsporidian Enterocytozoon hepatopenaei (EHP) is an emerging pathogen that causes substantial economic losses in shrimp (Penaeus spp.) aquaculture worldwide. To prevent diseases in shrimp, the manipulation of the gut microbiota has been suggested. However, prior knowledge of the host-microbiome is necessary. We assessed the modulation of the microbiome (bacteria/fungi) and its predicted functions over the course of disease progression in shrimp experimentally challenged with EHP for 30 days using high throughput 16S rRNA and ITS amplicon sequencing. Infection grade was assessed for the first time by quantitative digital histopathology. According to the infection intensity, three disease-stages (early/developmental/late) were registered. During the early-stage, EHP was not consistently detected, and a high diversity of potentially beneficial microorganisms related to nutrient assimilation were found. In the development-stage, most of the shrimp start to register a high infection intensity related to a decrease in beneficial microorganisms and an increase in opportunistic/pathogenic fungi. During late-stage, animals displayed different infection intensities, showed a displacement of beneficial microorganisms by opportunistic/pathogenic bacteria and fungi related to pathogen infection processes and depletion of energetic reserves. The degenerative cyclic pattern of EHP infection and its effects on beneficial microorganisms and beneficial functions of the shrimp hepatopancreas microbiome are discussed.


Subject(s)
Microbiota , Penaeidae , Animals , Enterocytozoon , Hepatopancreas , Penaeidae/microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
8.
PLoS One ; 17(8): e0272456, 2022.
Article in English | MEDLINE | ID: mdl-35947538

ABSTRACT

Infection with infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a crustacean disease that caused large-scale mortality in Penaeus stylirostris, deformity and growth retardation in Penaeus vannamei and Penaeus monodon. We surveyed the presence of IHHNV in three major shrimp-producing regions in Ecuador, namely Guayas, El Oro, and Esmeralda. The data show that IHHNV is endemic (3.3-100% prevalence) to shrimp farms in these regions. The whole genome sequences of representative circulating IHHNV genotypes in Ecuador and Peru showed that these genotypes formed a separate cluster within the Type II genotypes and were divergent from other geographical isolates of IHHNV originating in Asia, Africa, Australia, and Brazil. In experimental bioassays using specific pathogen-free (SPF) P. vannamei, P. monodon, and P. stylirostris and representative IHHNV isolates from Ecuador and Peru, the virus did not cause any mortality or induce clinical signs in any of the three penaeid species. Although IHHNV-specific Cowdry type A inclusion bodies were histologically detected in experimentally challenged P. vannamei and P. monodon and confirmed by in situ hybridization, no such inclusions were observed in P. stylirostris. Moreover, P. vannamei had the highest viral load, followed by P. monodon and P. stylirostris. Based on IHHNV surveillance data, we conclude that the currently farmed P. vannamei lines in Ecuador are tolerant to circulating IHHNV genotypes. The genome sequence and experimental bioassay data showed that, although the currently circulating genotypes are infectious, they do not induce clinical lesions in the three commercially important penaeid species. These findings suggest a potentially evolving virus-host relationship where circulating genotypes of IHHNV co-exist in equilibrium with P. vannamei raised in Peru and Ecuador.


Subject(s)
Densovirinae , Penaeidae , Animals , Densovirinae/genetics , Ecuador , Genome , Penaeidae/genetics , Peru/epidemiology
9.
J Microbiol Methods ; 196: 106476, 2022 05.
Article in English | MEDLINE | ID: mdl-35490989

ABSTRACT

Formalin-fixed paraffin-embedded (FFPE) tissues stored in thousands of human and animal pathology laboratories around the globe represent mines of stored genetic information. In recent years, the use of FFPE tissues as a viable source of DNA for diverse genetic studies has attracted attention for interrogating microbiomes from this sample type. These studies have proven that 16S rRNA amplicon sequencing-based microbiome studies are possible from FFPE samples but present some particular challenges. In this review, we summarize all aspects of microbiome studies from FFPE tissues including the challenges associated with working highly degraded DNA, best practices for reducing environmental contamination, and we propose solutions to address these issues. Finally, we discuss how the combination of FFPE microbiome studies and Laser Capture Microdissection and/or Laser Microdissection could enable to determine the spatial heterogeneity underlying complex bacterial communities.


Subject(s)
Formaldehyde , Microbiota , Animals , DNA/genetics , Microbiota/genetics , Paraffin Embedding , RNA, Ribosomal, 16S/genetics , Tissue Fixation
10.
Emerg Infect Dis ; 28(2): 373-381, 2022 02.
Article in English | MEDLINE | ID: mdl-35075996

ABSTRACT

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a nonenveloped, linear, single-stranded DNA virus belonging to the family Parvoviridae and is a World Organisation for Animal Health (OIE)-notifiable crustacean pathogen. During screening of Penaeus vannamei shrimp from 3 commercial shrimp facilities in the United States for a panel of OIE-listed (n = 7) and nonlisted (n = 2) crustacean diseases, shrimp from these facilities tested positive for IHHNV. Nucleotide sequences of PCR amplicons showed 99%-100% similarity to IHHNV isolates from Latin America and Asia. The whole genome of the isolates also showed high similarity to type 2 infectious forms of IHHNV. Phylogenetic analysis using capsid gene and whole-genome sequences demonstrated that the isolates clustered with an IHHNV isolate from Ecuador. The detection of an OIE-listed crustacean pathogen in the United States highlights the need for biosecurity protocols in hatcheries and grow-out ponds to mitigate losses.


Subject(s)
Densovirinae , Penaeidae , Animals , Densovirinae/genetics , Genome , Penaeidae/genetics , Phylogeny , Polymerase Chain Reaction , United States/epidemiology
11.
J Microbiol Methods ; 192: 106389, 2022 01.
Article in English | MEDLINE | ID: mdl-34863804

ABSTRACT

The gut microbiomes of rainbow trout (Oncorhynchus mykiss) reared at 16° and 22 °C were determined using formalin-fixed paraffin-embedded tissues (FFPE) and compared to fresh frozen tissue. The data revealed microbiomes could be successfully determined using FFPE tissue opening a new horizon in studying intestinal microbiota using archived histological samples.


Subject(s)
Cryopreservation , Fixatives/pharmacology , Formaldehyde/pharmacology , Gastrointestinal Microbiome/genetics , Oncorhynchus mykiss/microbiology , Paraffin Embedding , Animals , Base Sequence , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Temperature , Tissue Fixation
12.
PLoS One ; 16(12): e0261289, 2021.
Article in English | MEDLINE | ID: mdl-34941926

ABSTRACT

White Feces Syndrome (WFS) is an emergent disease of penaeid shrimp (Penaeus monodon and P. vannamei) that is identified by the presence of floating white fecal strings on pond water in grow-out ponds. Although the clinical manifestations of WFS are well defined, the underling etiology remains obscure. WFS has been associated with several enteric pathogens, including Enterocytozoon hepatopenaei (EHP). The association is based on studies that found areas where WFS has been reported, the prevalence and severity of EHP infection are high. In this study, we describe an experimental reproduction of WFS in P. vannamei pre-infected with EHP and challenged with a unique isolate of Vibrio parahaemolyticus isolated from the gastrointestinal tract of a shrimp displaying WFS. Upon laboratory challenge, shrimp displaying white fecal strings and white discoloration of the gastrointestinal tract were analyzed by histopathology, in-situ hybridization and quantitative PCR. Histological analysis confirmed the lesions of EHP and septic hepatopancreatic necrosis in the hepatopancreas of shrimp exposed to both pathogens. Quantitative PCR showed shrimp infected with both EHP and V. parahaemolyticus had a significantly higher load of EHP compared to shrimp infected with EHP alone. This is the first demonstration of experimental reproduction of WFS under laboratory conditions when animals are infected with EHP and V. parahaemolyticus concurrently. The data revealed a synergistic relation between EHP and V. parahaemolyticus isolate that led to the manifestation of WFS. We propose the gross signs of WFS can be used as an indicator of the presence of EHP infection in association with a particular strain of an enteric Vibrio spp. in countries where EHP is endemic.


Subject(s)
Penaeidae/microbiology , Penaeidae/parasitology , Animals , Aquaculture/methods , Enterocytozoon/pathogenicity , Feces/microbiology , Gastrointestinal Tract , In Situ Hybridization , Models, Animal , Polymerase Chain Reaction , Prevalence , Seafood/microbiology , Vibrio parahaemolyticus/pathogenicity
13.
J Aquat Anim Health ; 33(2): 69-76, 2021 06.
Article in English | MEDLINE | ID: mdl-34089194

ABSTRACT

White spot syndrome virus (WSSV) is a virulent disease that disrupts shrimp farm operations throughout the world. While the United States has had only limited outbreaks of WSSV within the past several decades, it is important to ensure that this disease does not infect wild penaeid shrimp populations. In Texas, there is a potential for WSSV to spread to wild penaeid populations in the Gulf of Mexico via infected imported nonnative bait shrimp, imported broodstock, or wild crustacean hosts. Due to these potential threats, the Texas Parks and Wildlife Coastal Fisheries Division monitored WSSV in wild brown shrimp Farfantepenaeus aztecus and white shrimp Litopenaeus setiferus from seven major bay systems along the Texas coast during 2019. While no positive samples were detected from the collected shrimp, a power analysis illustrated a potential for low-level WSSV prevalence within Texas shrimp populations that would not be detectable by this monitoring survey. Overall, WSSV does not appear to be a major threat in the Texas region of the Gulf of Mexico, but continual observation and monitoring of wild penaeid shrimp is necessary to protect this resource from future WSSV outbreaks.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , Animals, Wild , Disease Outbreaks , Texas/epidemiology
14.
Front Immunol ; 12: 634152, 2021.
Article in English | MEDLINE | ID: mdl-34054803

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is a lethal disease in marine shrimp that has caused large-scale mortalities in shrimp aquaculture in Asia and the Americas. The etiologic agent is a pathogenic Vibrio sp. carrying binary toxin genes, pirA and pirB in plasmid DNA. Developing AHPND tolerant shrimp lines is one of the prophylactic approaches to combat this disease. A selected genetic line of Penaeus vannamei was found to be tolerant to AHPND during screening for disease resistance. The mRNA expression of twelve immune and metabolic genes known to be involved in bacterial pathogenesis were measured by quantitative RT-PCR in two populations of shrimp, namely P1 that showed susceptibility to AHPND, and P2 that showed tolerance to AHPND. Among these genes, the mRNA expression of chymotrypsin A (ChyA) and serine protease (SP), genes that are involved in metabolism, and crustin-P (CRSTP) and prophenol oxidase activation system 2 (PPAE2), genes involved in bacterial pathogenesis in shrimp, showed differential expression between the two populations. The differential expression of these genes shed light on the mechanism of tolerance against AHPND and these genes can potentially serve as candidate markers for tolerance/susceptibility to AHPND in P. vannamei. This is the first report of a comparison of the mRNA expression profiles of AHPND tolerant and susceptible lines of P. vannamei.


Subject(s)
Gene Expression Profiling , Hepatopancreas/metabolism , Penaeidae/genetics , Transcriptome , Vibrio Infections/veterinary , Vibrio parahaemolyticus/pathogenicity , Animals , Antimicrobial Cationic Peptides/genetics , Chymotrypsin/genetics , Genetic Predisposition to Disease , Hepatopancreas/immunology , Hepatopancreas/microbiology , Hepatopancreas/pathology , Necrosis , Penaeidae/immunology , Penaeidae/microbiology , Serine Endopeptidases/genetics , Serine Proteases/genetics , Vibrio Infections/genetics , Vibrio Infections/immunology , Vibrio Infections/microbiology , Vibrio parahaemolyticus/immunology
15.
Mol Cell Probes ; 57: 101710, 2021 06.
Article in English | MEDLINE | ID: mdl-33722662

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is currently the most important bacterial disease of shrimp that has caused enormous losses to the shrimp industry worldwide. The causative agent of AHPND are Vibrio spp. Carrying plasmids containing the pirA and pirB genes which encode binary toxins, PirAB. Currently, AHPND is mostly diagnosed by PCR-based platforms which require the use of sophisticated laboratory instrumentation and are not suitable for a point-of-care diagnostics. Therefore, the availability of an alternative method based on isothermal amplification would be suitable for AHPND detection outside a laboratory setting and extremely useful at a pond side location. Isothermal amplification is based on the nucleic acid amplification at a single temperature and does not require the use of a thermal cycler. In this study, we developed an isothermal Recombinase Polymerase Amplification (RPA) assay for AHPND detection targeting both pirA and pirB genes, simultaneously and evaluated the specificity and sensitivity of the assay. The assay could detect AHPND without any cross-reaction with other microbial pathogens and Specific Pathogen Free (SPF) shrimp. The limit of detection of the assay was 5 copies of pirAB genes. To evaluate the reliability of the assay in detecting AHPND, DNA from Penaeus vannamei shrimp displaying acute and chronic infection were analyzed by the RPA assay and the results were compared with SYBR Green real-time PCR assay. While there was a 100% conformity between the two assay while detecting acute phase infection, RPA appeared to be more sensitive in detecting chronic phase infection. The data suggest that RPA assay described here would be a reliable method in detecting AHPND outside a standard laboratory setting.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , Animals , Necrosis , Persistent Infection , Real-Time Polymerase Chain Reaction , Recombinases , Reproducibility of Results , Vibrio parahaemolyticus/genetics
16.
J Invertebr Pathol ; 186: 107554, 2021 11.
Article in English | MEDLINE | ID: mdl-33596436

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is an OIE-listed enteric disease that has continued to plague the shrimp aquaculture industry since its first discovery in 2009. AHPND is one of the biggest disease threats to the shrimp aquaculture industry along with white spot disease (WSD) which has severely impacted both crayfish and shrimp aquaculture. AHPND is caused by specific marine Vibrio spp. which carry plasmid-borne binary toxins PirAVp and PirBVp. This research investigated if crayfish are susceptible to AHPND-causing Vibrio parahaemolyticus (VpAHPND) to discern the potential risk that AHPND may pose to the crayfish aquaculture industry. Susceptibility was investigated by challenging Cherax quadricarinatus (Australian red claw crayfish) and Penaeus vannamei (Pacific white shrimp) with VpAHPND in a cohabitation immersion bioassay. Upon termination of the bioassay, crayfish survival was significantly higher than shrimp survival (87% vs. 33%). Hepatopancreas dissected from experimentally challenged animals were screened for the binary toxin genes pirAVp and pirBVp by real-time and duplex conventional PCR assays, and also were examined by H&E histology for the detection of characteristic AHPND pathology. Although AHPND toxin genes pirAVp and pirBVp were detected in a subset of crayfish samples, histopathology did not reveal any pathognomonic lesions that are characteristic of AHPND in any crayfish samples examined. These findings suggest that crayfish are likely resistant to AHPND.


Subject(s)
Astacoidea/microbiology , Hepatopancreas/microbiology , Penaeidae/microbiology , Vibrio parahaemolyticus/physiology , Animals , Hepatopancreas/pathology , Necrosis/microbiology , Necrosis/pathology
17.
Virology ; 553: 117-121, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33271489

ABSTRACT

Davidson's-fixed paraffin-embedded (DFPE) shrimp tissue are a priceless biological resource for pathogen discovery and evolutionary studies for aquaculture disease diagnostic laboratories worldwide. Nucleic acids extracted from DFPE tissues are often not adequate for most downstream molecular analysis due to fragmentation and chemical modifications. In this study, next generation sequencing (NGS) was used to reconstruct the complete genome of three geographical isolates (Belize, Venezuela and Hawaii) of a ~10 kb length RNA virus of shrimp, Taura syndrome virus (TSV), from DFPE tissues that have been archived for 15 years. Phylogenetic analyses showed that TSV isolates from Belize, Venezuela and Hawaii formed well supported clusters with homologous isolates from the corresponding regions submitted in the GenBank database. This is the first study to demonstrate the utility of archived tissue samples for identification of RNA viruses and evolutionary studies involving a viral disease in crustaceans and opens an avenue for expediting pathogen discovery.


Subject(s)
Dicistroviridae/genetics , Genome, Viral , Penaeidae/virology , Animals , Formaldehyde , High-Throughput Nucleotide Sequencing , Paraffin Embedding , Phylogeny , RNA, Viral/genetics , Tissue Fixation , Whole Genome Sequencing
18.
Pathogens ; 9(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348814

ABSTRACT

Pacific oysters, Crassostrea gigas, are one of the most productive aquaculture species in the world. However, they are threatened by the spread of Ostreid herpesvirus-1 (OsHV-1) and its microvariants (collectively "µvars"), which cause mass mortalities in all life stages of Pacific oysters globally. Breeding programs have been successful in reducing mortality due to OsHV-1 variants following viral outbreaks; however, an OsHV-1-resistant oyster line does not yet exist in the United States (US), and it is unknown how OsHV-1 µvars will affect US oyster populations compared to the current variant, which is similar to the OsHV-1 reference, found in Tomales Bay, CA. The goals of this study were to investigate the resistance of C. gigas juveniles produced by the Molluscan Broodstock Program (MBP) to three variants of OsHV-1: a California reference OsHV-1, an Australian µvar, and a French µvar. This is the first study to directly compare OsHV-1 µvars to a non-µvar. The survival probability of oysters exposed to the French (FRA) or Australian (AUS) µvar was significantly lower (43% and 71%, respectively) than to the reference variant and controls (96%). No oyster family demonstrated resistance to all three OsHV-1 variants, and many surviving oysters contained high copy numbers of viral DNA (mean ~3.53 × 108). These results indicate that the introduction of OsHV-1 µvars could have substantial effects on US Pacific oyster aquaculture if truly resistant lines are not achieved, and highlight the need to consider resistance to infection in addition to survival as traits in breeding programs to reduce the risk of the spread of OsHV-1 variants.

19.
Microorganisms ; 8(10)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049933

ABSTRACT

Vibrio parahaemolyticus carrying binary toxin genes, pirAB, is one of the etiological agents causing acute hepatopancreatic necrosis disease (AHPND) in shrimp. This disease has emerged recently as a major threat to shrimp aquaculture worldwide. During a routine PCR screening of AHPND-causing V. parahaemolyticus strains, an isolate tested PCR positive for pirB (R13) and another isolate tested positive for both the pirA and pirB (R14) genes. To evaluate the pathogenicity of these isolates, specific pathogen-free (SPF) Penaeus vannamei were experimentally challenged. For both R13 and R14 isolates, the final survival rate was 100% at termination of the challenge, whereas the final survival with the AHPND-causing V. parahaemolyticus was 0%. The nucleotide sequence of the plasmid DNA carrying the binary toxin genes revealed that R13 contains a deletion of the entire pirA gene whereas R14 contains the entire coding regions of both pirA and pirB genes. However, R14 possesses an insertion upstream of the pirA gene. In R14, mRNA for both pirA and pirB genes could be detected but no cognate proteins. This shows that the genome of AHPND-causing V. parahaemolyticus is highly plastic and, therefore, detection of the pirA and pirB genes alone by DNA-PCR is insufficient as a diagnostic test for AHPND.

20.
Dis Aquat Organ ; 141: 71-78, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32940252

ABSTRACT

White feces syndrome (WFS) is an emerging and poorly described disease characterized by the presence of floating white fecal strings in shrimp (Penaeus monodon and P. vannamei) grow-out ponds. WFS has been associated with several pathogens, including Enterocytozoon hepatopenaei. This association is based on the fact that in areas where E. hepatopenaei has been reported, there was also a high WFS prevalence. E. hepatopenaei is an emerging pathogen that has affected cultured shrimp in Indonesia, Vietnam, China, Thailand, and India. In 2016, we reported the presence of E. hepatopenaei in farmed P. vannamei in Venezuela. In this study, we describe the first case of WFS in Venezuela associated with E. hepatopenaei. The white fecal strings and shrimp displaying white feces along the gastrointestinal tract observed in this study were similar to the gross signs found in WFS-impacted P. vannamei in SE Asian countries. Furthermore, we describe a strong association between WFS and E. hepatopenaei in the samples obtained from Venezuela and Indonesia. Quantification of E. hepatopenaei in WFS-affected ponds, ponds with a history of WFS, and ponds with no WFS showed that E. hepatopenaei loads were significantly higher in WFS-affected ponds. Furthermore, these findings constitute the first report of WFS being associated with E. hepatopenaei in farmed shrimp in Latin America. Additionally, we propose that the gross signs of WFS such as floating whitish fecal strings can be used as an indicator of the presence of E. hepatopenaei in countries where E. hepatopenaei is endemic.


Subject(s)
Enterocytozoon , Microsporidiosis/veterinary , Penaeidae , Animals , Feces , Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...