Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38399780

ABSTRACT

The bacterium Erwinia amylovora causes fire blight and continues to threaten global commercial apple and pear production. Conventional microbiology techniques cannot accurately determine the presence of live pathogen cells in fire blight cankers. Several factors may prevent E. amylovora from growing on solid culture media, including competing microbiota and the release of bacterial-growth-inhibitory compounds by plant material during sample processing. We previously developed a canker processing methodology and a chip-based viability digital PCR (v-dPCR) assay using propidium monoazide (PMA) to bypass these obstacles. However, sample analysis was still time-consuming and physically demanding. In this work, we improved the previous protocol using an automatic tissue homogenizer and transferred the chip-based v-dPCR to the BioRad QX200 droplet dPCR (ddPCR) platform. The improved sample processing method allowed the simultaneous, fast, and effortless processing of up to six samples. Moreover, the transferred v-ddPCR protocol was compatible with the same PMA treatment and showed a similar dynamic range, from 7.2 × 102 to 7.6 × 107 cells mL-1, as the previous v-dPCR. Finally, the improved protocol allowed, for the first time, the detection of E. amylovora viable but nonculturable (VBNC) cells in cankers and bark tissues surrounding cankers. Our v-ddPCR assay will enable new ways to evaluate resistant pome fruit tree germplasm, further dissect the E. amylovora life cycle, and elucidate E. amylovora physiology, epidemiology, and new options for canker management.

2.
Int J Environ Res Public Health ; 12(5): 4921-41, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25955528

ABSTRACT

A few diatom species produce toxins that affect human and animal health. Among these, members of the Pseudo-nitzschia genus were the first diatoms unambiguously identified as producer of domoic acid, a neurotoxin affecting molluscan shell-fish, birds, marine mammals, and humans. Evidence exists indicating the involvement of another diatom genus, Amphora, as a potential producer of domoic acid. We present a strategy for the detection of the diatom species Amphora coffeaeformis based on the development of species-specific oligonucleotide probes and their application in microarray hybridization experiments. This approach is based on the use of two marker genes highly conserved in all diatoms, but endowed with sufficient genetic divergence to discriminate diatoms at the species level. A region of approximately 450 bp of these previously unexplored marker genes, coding for elongation factor 1-a (eEF1-a) and silicic acid transporter (SIT), was used to design oligonucleotide probes that were tested for specificity in combination with the corresponding fluorescently labeled DNA targets. The results presented in this work suggest a possible use of this DNA chip technology for the selective detection of A. coffeaeformis in environmental settings where the presence of this potential toxin producer may represent a threat to human and animal health. In addition, the same basic approach can be adapted to a wider range of diatoms for the simultaneous detection of microorganisms used as biomarkers of different water quality levels.


Subject(s)
Diatoms/isolation & purification , Oligonucleotide Array Sequence Analysis/methods , Italy , Mediterranean Sea , Oligonucleotide Probes
3.
Int J Environ Res Public Health ; 12(5): 5485-504, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26006124

ABSTRACT

Our understanding of the composition of diatom communities and their response to environmental changes is currently limited by laborious taxonomic identification procedures. Advances in molecular technologies are expected to contribute more efficient, robust and sensitive tools for the detection of these ecologically relevant microorganisms. There is a need to explore and test phylogenetic markers as an alternative to the use of rRNA genes, whose limited sequence divergence does not allow the accurate discrimination of diatoms at the species level. In this work, nine diatom species belonging to eight genera, isolated from epylithic environmental samples collected in central Italy, were chosen to implement a panel of diatoms covering the full range of ecological status of freshwaters. The procedure described in this work relies on the PCR amplification of specific regions in two conserved diatom genes, elongation factor 1-a (eEF1-a) and silicic acid transporter (SIT), as a first step to narrow down the complexity of the targets, followed by microarray hybridization experiments. Oligonucleotide probes with the potential to discriminate closely related species were designed taking into account the genetic polymorphisms found in target genes. These probes were tested, refined and validated on a small-scale prototype DNA chip. Overall, we obtained 17 highly specific probes targeting eEF1-a and SIT, along with 19 probes having lower discriminatory power recognizing at the same time two or three species. This basic array was validated in a laboratory setting and is ready for tests with crude environmental samples eventually to be scaled-up to include a larger panel of diatoms. Its possible use for the simultaneous detection of diatoms selected from the classes of water quality identified by the European Water Framework Directive is discussed.


Subject(s)
Biomarkers/analysis , Diatoms/isolation & purification , Oligonucleotide Array Sequence Analysis/methods , Peptide Elongation Factor 1/genetics , Base Sequence , Diatoms/classification , Diatoms/genetics , Fresh Water , Italy , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...