Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(23): 26515-26524, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32406227

ABSTRACT

Molecular organization of vapor-deposited organic molecules in the active layer of organic light-emitting diodes (OLEDs) has been a matter of great interest as it directly influences various optoelectronic properties and the overall performance of the devices. Contrary to the general assumption of isotropic molecular orientation in vacuum-deposited thin-film OLEDs, it is possible to achieve an anisotropic molecular distribution at or near the surface under controlled experimental conditions. In this study, we have used interface-specific vibrational sum frequency generation (VSFG) spectroscopy to determine the orientation of a low-molecular weight OLED material, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP), at free (air) and buried (CaF2) interfaces. VSFG spectra were measured at four different polarization combinations for five different thicknesses of the CBP film. The spectral shift and VSFG intensity changes with the film thickness can be accurately modeled by considering the optical interference effect of the signals coming from the CBP/air and CBP/CaF2 interfaces. A global fitting of the experimental spectra for all thicknesses along with theoretical simulations reveal that the long molecular axis of CBP is oriented at an angle of ∼58° (47-70°) from the surface normal at the air/CBP interface, whereas at the CBP/CaF2 interface, the angle is ∼48° (43-52°). Such a change in the angle (∼10°) suggests that the CBP molecule tends to orient more vertically (edge-on) at the buried CaF2 interface, which may be attributed to the intermolecular π-π stacking interaction between adjacent CBP molecules.

2.
J Phys Chem Lett ; 10(8): 1757-1762, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30908051

ABSTRACT

Molecular orientation at the donor-acceptor interface plays a crucial role in determining the efficiency of organic semiconductor materials. We have used vibrational sum frequency generation spectroscopy to determine the orientation of poly-3-hexylthiophene (P3HT) at the planar buried interface with fullerene (C60). The thiophene rings of P3HT have been found to tilt significantly toward C60, making an average angle θ ≈ 49° ± 10° between the plane of the ring and the interface. Such tilt may be attributed to π-π stacking interactions between P3HT and C60 and may facilitate efficient charge transfer between donor and acceptor. Upon annealing, the thiophene rings tilt away from the interface by Δθ = 12-19°. This may be attributed to higher crystallinity of annealed P3HT that propagates all the way to the interface, resulting in more "edge-on" orientation, which is consistent with the observed red-shift by ∼6 cm-1 and spectral narrowing of the C=C stretch bands.

3.
ACS Nano ; 11(4): 4077-4085, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28402101

ABSTRACT

Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 µm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (∼40.1 mA/cm2) and energy conversion efficiency (∼12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ∼13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

SELECTION OF CITATIONS
SEARCH DETAIL
...