Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(42): e202309055, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37635091

ABSTRACT

The origin of the bulk photovoltaic effect (BPVE) was considered as a built-in electric field formed by the macroscopic polarization of materials. Alternatively, the "shift current mechanism" has been gradually accepted as the more appropriate description of the BPVE. This mechanism implies that the photocurrent generated by the BPVE is a topological current featuring an ultrafast response and dissipation-less nature, which is very attractive for photodetector applications. Meanwhile, the origin of the BPVE in organic-inorganic hybrid perovskites (OIHPs) has not been discussed and is still widely accepted as the classical mechanism without any experimental evidence. Herein, we observed the BPVE along the nonpolar axis in OIHPs, which is inconsistent with the classical explanation. Furthermore, based on the nonlinear optical tensor correlation, we substantiated that the BPVE in OIHPs is originated in the shift current mechanism.

2.
Nature ; 609(7927): 502-506, 2022 09.
Article in English | MEDLINE | ID: mdl-36104553

ABSTRACT

Hund's multiplicity rule states that a higher spin state has a lower energy for a given electronic configuration1. Rephrasing this rule for molecular excited states predicts a positive energy gap between spin-singlet and spin-triplet excited states, as has been consistent with numerous experimental observations over almost a century. Here we report a fluorescent molecule that disobeys Hund's rule and has a negative singlet-triplet energy gap of -11 ± 2 meV. The energy inversion of the singlet and triplet excited states results in delayed fluorescence with short time constants of 0.2 µs, which anomalously decrease with decreasing temperature owing to the emissive singlet character of the lowest-energy excited state. Organic light-emitting diodes (OLEDs) using this molecule exhibited a fast transient electroluminescence decay with a peak external quantum efficiency of 17%, demonstrating its potential implications for optoelectronic devices, including displays, lighting and lasers.

3.
J Am Chem Soc ; 142(29): 12596-12601, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32579355

ABSTRACT

Herein, we report a novel porphyrin/fullerene supramolecular cocrystal using a shape-persistent zinc-metalated porphyrin box (Zn-PB) and C60/C70. An unprecedented arrangement of a tightly packed square-planar core of four C60 or C70 surrounded by six cube-shaped Zn-PBs was observed. This unique packing promotes strong charge transfer (CT) interactions between the two components in the ground state and formation of charge-separated states with very long lifetimes in the excited state and enables unusually high photoconductivity. Quantum chemical calculations show that these features are enabled by delocalized orbitals that promote the CT, on one hand, and that are spatially separated from each other, on the other hand. This work may open a new avenue to design novel electron donor/acceptor architectures for artificial photosynthesis.

4.
Chem Sci ; 10(43): 10040-10047, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-32015817

ABSTRACT

Downsizing coordination polymers (CPs) to thin film configurations is a prerequisite for device applications. However, fabrication of thin films of CPs including metal-organic frameworks (MOFs) with reasonable electrical conductivity is challenging. Herein, thin film fabrication of a Cu(ii)-CP employing a layer-by-layer method is demonstrated whereby a self-assembled monolayer on Au was used as the functionalized substrate. Growth of the Cu(ii)-CP at the solid-liquid interface generated open-metal Cu(ii) sites in the thin film which were susceptible to activation by molecular dopant molecules. A significant enhancement in in-plane electrical conductivity and an unheralded cross-plane current rectification ratio (exceeding 105 both at room-temperature and at an elevated temperature) were achieved. Such a remarkable rectification ratio was realized, similar to those of commercial Si rectifier diodes. This phenomenon is attributed to the formation of an electronic heterostructure in the molecularly doped thin film. Molecular doping additionally transformed the interfacial properties of thin films from hydrophilic to highly hydrophobic.

5.
ACS Omega ; 2(8): 4488-4493, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457741

ABSTRACT

Electrically conductive metal-organic coordination polymers (CPs) are promising candidates for a variety of technological applications. However, poor energetic and spatial overlap between the sp-electrons of organic ligands and the d-electrons of metal ion often blocks an effective charge transport (mobility) across CPs. Herein, we present a bimetallic design principle for enhancing carrier mobility in CPs. Bimetallic CPs of Fe(III) and Cr(III) ions coordinated to 1,3,5-benzenetricarboxylic acid (BTC) ligand (Fe-BTC-Cr) exhibited remarkably high carrier mobility at the matching mole ratio (1:1) with enhancement factors of 102 and 104 in comparison to those of monometallic parents, Fe-BTC and Cr-BTC, respectively. The observation was substantiated by lowering of the band gap between the valence band and the conduction band upon the formation of a hybrid p-n-type structure in the bimetallic CPs. The direct current conductivity values of the CPs measured by four-probe technique were in good agreement with the alternating current conductivity values obtained from the electrochemical impedance spectroscopy. Our flexible approach of picking and choosing the appropriate combination of metal ions from the periodic table is expected to generate various CPs with desirable semiconducting properties.

6.
J Phys Chem Lett ; 7(24): 4988-4995, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973877

ABSTRACT

Owing to long spin-relaxation time and chemically customizable physical properties, molecule-based semiconductor materials like metal-phthalocyanines offer promising alternatives to conventional dilute magnetic semiconductors/oxides (DMSs/DMOs) to achieve room-temperature (RT) ferromagnetism. However, air-stable molecule-based materials exhibiting both semiconductivity and magnetic-order at RT have so far remained elusive. We present here the concept of supramolecular arrangement to accomplish possibly RT ferromagnetism. Specifically, we observe a clear hysteresis-loop (Hc ≈ 120 Oe) at 300 K in the magnetization versus field (M-H) plot of the self-assembled ensembles of diamagnetic Zn-phthalocyanine having peripheral F atoms (ZnFPc; S = 0) and paramagnetic Fe-phthalocyanine having peripehral H atoms (FePc; S = 1). Tauc plot of the self-assembled FePc···ZnFPc ensembles showed an optical band gap of ∼1.05 eV and temperature-dependent current-voltage (I-V) studies suggest semiconducting characteristics in the material. Using DFT+U quantum-chemical calculations, we reveal the origin of such unusual ferromagnetic exchange-interaction in the supramolecular FePc···ZnFPc system.

7.
J Phys Chem Lett ; 7(15): 2945-50, 2016 Aug 04.
Article in English | MEDLINE | ID: mdl-27404432

ABSTRACT

Redox-active pyrrole (Py) monomers were intercalated into 1D nanochannels of [Cd(NDC)0.5(PCA)]·Gx (H2NDC = 2,6-napthalenedicarboxylic acid, HPCA = 4-pyridinecarboxylic acid, G = guest molecules) (1) - a fluorescent 3D MOF (λem = 385 nm). Subsequent activation of 1⊃Py upon immersing into iodine (I2) solution resulted in an increment of the bulk electrical conductivity by ∼9 orders of magnitude. The unusual increase in conductivity was attributed to the formation of highly oriented and conducting polypyrrole (PPy) chains inside 1D nanochannels and specific host-guest interaction in 1⊃PPy thereof. The Hall-effect measurements suggested 1⊃PPy to be an n-type semiconductor material with remarkably high-carrier density (η) of ∼1.5 × 10(17) cm(-3) and mobility (µ) of ∼8.15 cm(2) V(-1) s(-1). The fluorescence property of 1 was almost retained in 1⊃PPy with concomitant exciplex-type emission at higher wavelength (λem = 520 nm). The here-presented results on [MOF⊃Conducting Polymer] systems in general will serve as a prototype experiment toward rational design for the development of highly conductive yet fluorescent MOF-based materials for various optoelectronic applications.

8.
Dalton Trans ; 45(16): 6901-8, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-26961352

ABSTRACT

Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems.

9.
ACS Omega ; 1(3): 371-377, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-30023481

ABSTRACT

An amphiphilic pyrene derivative exhibiting unusually stable excimer emission due to strong aggregation is presented. The aggregated system served as an intelligent sensor for metal ions and nitro explosives in aqueous media. The excimer displayed excellent selectivity toward Cu2+ among the tested cations. The observation was interpreted on the basis of chelation of metal ions involving the hydroxyl and amino groups of two molecules, leading to the ligand-to-metal charge-transfer (CT) process. The excimer was further applied for the cell imaging of Cu2+ ions. Also, while treating the excimer with various nitro explosives, it displayed efficient 2,4,6-trinitrophenol sensing, corroborating mainly the CT process from pyrene to the analyte due to intercalation of the analyte within pyrene.

SELECTION OF CITATIONS
SEARCH DETAIL
...