Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(12): 7789-7797, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36909764

ABSTRACT

Industrial growth can have a good impact on a country's economic growth, but it can also cause environmental problems, including water pollution. About 80% of industrial wastewater is discharged into the environment without treatment, of which 17-20% is dominated by dyes, such as methylene blue (MB) and methyl orange (MO) from the textile industry. Only about 5% of a textile dye is used in the dyeing process and the rest is discarded. This problem, of course, requires special handling considering the harmful effects to health. On the other hand, the abundance of plastic waste is increasing by 14% or 85 000 tons per year. This problem must be solved due to its film-forming properties. High-density polyethylene (HDPE) is one type of plastic used as a membrane material. Therefore, in this study, HDPE plastic waste was utilized as a membrane for dye removal. In this study, HDPE plastic waste was fabricated via a thermal-induced phase-separation method using mineral oil as a solvent at various concentrations of 8%, 10%, 13%, and 15% (w/w). All the membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and contact angle measurements. The results showed that the HDPE membrane at a concentration of 15% displayed the best performance compared to the others in terms of MB rejection. The negative charge (-36.9) of the HDPE membrane was more effective for cationic dye removal compared to the anionic dye. The flux and rejection of HDPE 15% for 100 ppm MB and MO removal were 2.71 and 4.93 L m-2 h-1, and 99.72% and 89.8%, respectively. The pure water flux of the membrane was 15.01 L m-2 h-1 and the tensile strength was 0.3435 MPa.

2.
RSC Adv ; 12(35): 22662-22670, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36105979

ABSTRACT

Crude palm oil (CPO) has emerged as a significant commodity in the economic and social development of producer nations. However, the presence of free fatty acids (FFAs) results in decreased CPO quality. Due to many advantages, the PVDF hollow fiber membrane has a higher potential to remove FFA from CPO than other polymeric membranes, despite the fact that FFA rejection performance remains poor. To solve this issue, membrane surface modification has emerged as one of the potential options for increasing electrostatic contact between the membrane surface and the FFA, resulting in high efficiency FFA separation from CPO. In this investigation, the membrane surface was coated with chitosan (CS) as a coating agent and glutaraldehyde (GA) as a crosslinking agent. The findings of the characterization demonstrated that the presence of a CS/GA combination with a low CS weight on the membrane surface resulted in enhanced hydrophilicity, porosity, water flow, and surface roughness. Furthermore, as compared to the uncoated PVDF hollow fiber membrane, the performance of the CPO with PVDF/CS 0.5 hollow fiber membrane achieved a maximum result of FFA rejection of up to 14.99%. The use of a mixture of CS and GA on the PVDF membrane surface to improve FFA reduction has been shown to be a promising technique for scaling up membrane technology.

3.
Membranes (Basel) ; 12(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35323821

ABSTRACT

Oilfield produced water (OPW) has become a primary environmental concern due to the high concentration of dissolved organic pollutants that lead to bioaccumulation with high toxicity, resistance to biodegradation, carcinogenicity, and the inhibition of reproduction, endocrine, and non-endocrine systems in aquatic biota. Photodegradation using photocatalysts has been considered as a promising technology to sustainably resolve OPW pollutants due to its benefits, including not requiring additional chemicals and producing a harmless compound as the result of pollutant photodegradation. Currently, titanium dioxide (TiO2) has gained great attention as a promising photocatalyst due to its beneficial properties among the other photocatalysts, such as excellent optical and electronic properties, high chemical stability, low cost, non-toxicity, and eco-friendliness. However, the photoactivity of TiO2 is still inhibited because it has a wide band gap and a low quantum field. Hence, the modification approaches for TiO2 can improve its properties in terms of the photocatalytic ability, which would likely boost the charge carrier transfer, prevent the recombination of electrons and holes, and enhance the visible light response. In this review, we provide an overview of several routes for modifying TiO2. The as-improved photocatalytic performance of the modified TiO2 with regard to OPW treatment is reviewed. The stability of modified TiO2 was also studied. The future perspective and challenges in developing the modification of TiO2-based photocatalysts are explained.

SELECTION OF CITATIONS
SEARCH DETAIL
...