Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 18(4): 2504-2512, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29442920

ABSTRACT

Disorder in a mixed phase, sp2-sp3 bonded graphene-like nanocarbon (GNC) lattice has been extensively studied for its electronic and field emission properties. Morphological investigations are performed using scanning electron microscopy (SEM) which depicts microstructures comprising of atomically flat terraces (c-planes) with an abundance of edges (ab planes which are orthogonal to c-planes). Scanning tunneling microscopy (STM) is used to observe the atomic structure of basal planes whereas field emission microscopy (FEM) is found to be suitable for resolving nanotopography of edges. STM images revealed the hexagonal and non-hexagonal atomic arrangements in addition to a variety of defect structures. Scanning tunneling spectroscopy is carried out to study the effect of this short-range disorder on the local density of states. Current versus voltage (I-V) characteristics have been recorded at different defect sites and are compared with respect to the extent of the defect. As sharp edges of GNC are expected to be excellent field emitters, because of low work function and high electric field, enhancement in current is observed particularly when applied electric field is along basal planes. Therefore, it is worthwhile to investigate field emission from these samples. The FEM images show a cluster of bright spots at low voltages which later transformed into an array resembling ledges of ab-planes with increasing voltage. Reproducible I-V curves yield linear Fowler-Nordheim plots supporting field emission as the dominant mechanism of electron emission. Turn on field for 10 µA current is estimated to be ~3 V/µm.

2.
J Nanosci Nanotechnol ; 18(3): 1626-1635, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448639

ABSTRACT

Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

3.
Rev Sci Instrum ; 88(3): 033103, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372416

ABSTRACT

We report the construction of a simple, light weight, and compact atomic beam spectroscopy cell for strontium atoms. The cell is built using glass blowing technique and includes a simple titanium sublimation pump for the active pumping of residual and background gases to maintain ultra-high vacuum. A commercially available and electrically heated dispenser source is used to generate the beam of Sr atoms. We perform spectroscopy on the 5s2S01→5s 5pP11 transition to obtain a well resolved Doppler free spectroscopic signal for frequency stabilization of the laser source. This design can be easily extended to other alkali and alkaline earth metals.

4.
Nanoscale ; 5(10): 4404-11, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23575605

ABSTRACT

We propose enhanced charge storage capacity of nanoparticles based polymer films. A flat band voltage window varying from 5-7 V is obtained leading to a trapped charge density of the order of 10(13) cm(-2). These results vary for two distinct morphologies obtained due to decoration of a urethane-methacrylate comb polymer (UMCP) network by gold nanoparticles (AuNPs). Films have been further investigated for morphology, optical, charge storage, and electron transport properties using techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), absorption spectroscopy (UV-Vis), scanning tunneling microscopy/spectroscopy (STM/STS) and capacitance versus voltage (C-V) measurements. SEM and AFM confirm either the deposition of AuNPs inside the UMCP network or the formation of ring like structures depending on the deposition sequence. STS measurements performed on both films are compared with bare UMCP and AuNPs films. Current versus voltage (I-V) characteristics so obtained are discussed in the light of electron transport mechanisms in such materials.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Electron Transport , Metal Nanoparticles/ultrastructure , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Scanning Transmission/methods
5.
Nanotechnology ; 19(26): 265605, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-21828686

ABSTRACT

Nanocrystalline lanthanum hexaboride (LaB(6)) films have been deposited on molybdenum foil by the pulsed laser deposition (PLD) technique. The as-deposited films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The XRD pattern shows the cubic crystallinity of the LaB(6) film. The AFM studies reveal that the conical shaped LaB(6) nanostructures have height 60 nm, base 800 nm, and a typical radius of curvature ∼20 nm. A comparison of force and in situ current imaging AFM studies reveals that current contrast does not originate from the surface topography of the LaB(6) film. Field emission studies have been performed in the planar diode configuration. A current density of 4.4 × 10(-2) A cm(-2) is drawn from the actual emitting area. The Fowler-Nordheim plot is found to be linear, in accordance with the quantum mechanical tunneling phenomenon. The field enhancement factor is estimated to be 3585, indicating that the field emission is from LaB(6) nanocrystallites present on the emitter surface, as confirmed by the AFM. The emission current-time plots show current stability to the extent of 5% fluctuation about the average current over a period of 3 h.

6.
Phys Chem Chem Phys ; 8(15): 1837-44, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16633670

ABSTRACT

In this article, the effect of interparticle interactions of 4.63 nm sized monolayer protected gold clusters (Au MPCs) during quantized double layer (QDL) charging has been investigated using electrochemical techniques. Voltammetry and scanning tunneling microscopy have been used to compare their electron transfer behavior. Furthermore, since the QDL process is diffusion controlled, the diffusion coefficient values have been estimated at various charge steps using two independent electroanalytical techniques, viz. chronoamperometry and impedance. These results show that higher core charge facilitates higher diffusion coefficient values, and indicate that repulsive interactions dominate for charged MPCs compared to those of its neutral analogue, which are mainly attractive in nature. Additionally, the electron transfer rate constants at various charge steps have been estimated from the impedance results, showing comparatively faster electron transfer rate at higher charge states.


Subject(s)
Gold/chemistry , Nanostructures/chemistry , Algorithms , Electrochemistry , Electrons , Nanostructures/ultrastructure , Particle Size
7.
Langmuir ; 20(23): 10208-17, 2004 Nov 09.
Article in English | MEDLINE | ID: mdl-15518515

ABSTRACT

In this report, we demonstrate the single-electron charging features of larger-sized (ca. 3.72 nm) Au nanoclusters protected with dodecanethiol [approximate composition, Au1415(RS)328] using combined electrochemical and scanning tunneling microscopic (STM) studies. In particular, these nanoclusters show a highly populated single-electron charging peak in voltammetric experiments, where the calculated capacitance is in good agreement with the experimentally obtained value of 1.6 aF. In comparison to the voltammetric studies, STM measurements over a single Au particle on the highly oriented pyrolytic graphite surface reveal nonlinear current-voltage (I-V) characteristics with a large central gap, signifying single-electron-transfer features. The I-V results demonstrate a clear Coulomb blockade effect with a central gap of around 0.2 eV, which is in good agreement with the orthodox theory for the double barrier tunnel junction system. The standard heterogeneous electron-transfer rate constant estimated from impedance measurements is found to be of 7.97 x 10(-6) cm.s(-1), suggesting that the process is very sluggish. Furthermore, diffusion coefficient (Dc) values calculated from chronoamperometry and impedance measurements are in good agreement with theoretically calculated values using the modified Stokes-Einstein equation. The electron-transfer rate constant estimated from cyclic voltammograms of adsorbed monolayer protected Au nanoclusters is found to be about 2 s(-1), which is slower than that reported for its smaller analogues.

SELECTION OF CITATIONS
SEARCH DETAIL
...