Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Biophys J ; 50(5): 731-743, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33730176

ABSTRACT

The effects of the chemical environment of menaquinones (all-trans MK-4 and all-trans MK-7) incorporated in lipid monolayers on mercury electrodes have been studied with respect to the thermodynamics and kinetics of their electrochemistry. The chemical environment relates to the composition of lipid films as well as the adjacent aqueous phase. It could be shown that the addition of all-trans MK-4 to TMCL does not change the phase transition temperatures of TMCL. In case of DMPC monolayers, the presence of cholesterol has no effect on the thermodynamics (formal redox potentials) of all-trans MK-7, but the kinetics are affected. Addition of an inert electrolyte (sodium perchlorate; change of ionic strength) to the aqueous phase shifts the redox potentials of all-trans MK-7 only slightly. The formal redox potentials of all-trans MK-4 were determined in TMCL and nCL monolayers and found to be higher in nCL monolayers than in TMCL monolayers. The apparent electron transfer rate constants, transfer coefficients and activation energies of all-trans MK-4 in cardiolipins have been also determined. Most surprisingly, the apparent electron transfer rate constants of all-trans MK-4 exhibit an opposite pH dependence for TMCL and nCL films: the rate constants increase in TMCL films with increasing pH, but in nCL films they increase with decreasing pH. This study is a contribution to understand environmental effects on the redox properties of membrane bond redox systems.


Subject(s)
Thermodynamics , Cardiolipins , Electrochemical Techniques , Electrodes , Kinetics , Mercury , Oxidation-Reduction , Vitamin K 2
2.
Eur Biophys J ; 49(3-4): 279-288, 2020 May.
Article in English | MEDLINE | ID: mdl-32372117

ABSTRACT

The acid-base and redox properties of the menaquinones MK-4, MK-7, and MK-9 (vitamin K2) have been studied in DMPC monolayers on mercury electrodes. The monolayers were prepared by adhesion-spreading of menaquinone-spiked DMPC liposomes on a stationary mercury drop electrode. All three menaquinones possess [Formula: see text] constants outside the experimentally accessible range, i.e., they are higher than about 12. The standard potentials of MK-4, MK-7, and MK-9 in the DMPC monolayers are very similar, i.e., 0.351, 0.326, and 0.330 V (corresponding to the biochemical standard potentials - 0.063, - 0.088, and - 0.085 V).


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Mercury/chemistry , Vitamin K 2/chemistry , Electrodes , Hydrogen-Ion Concentration , Oxidation-Reduction , Vitamin K 2/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...