Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
FEBS J ; 287(9): 1865-1885, 2020 05.
Article in English | MEDLINE | ID: mdl-31679177

ABSTRACT

Rapid adaptation to environmental changes is crucial for bacterial survival. Almost all bacteria possess a conserved stringent response system to prompt transcriptional and metabolic responses toward stress. The adaptive process relies on alarmones, guanosine pentaphosphate (pppGpp), and tetraphosphate (ppGpp), to regulate global gene expression. The ppGpp is more potent than pppGpp in the regulatory activity, and pppGpp phosphohydrolase (GppA) plays a key role in (p)ppGpp homeostasis. Sharing a similar domain structure, GppA is indistinguishable from exopolyphosphatase (PPX), which mediates the metabolism of cellular inorganic polyphosphate. Here, our phylogenetic analysis of PPX/GppA homologs in bacteria shows a wide distribution with several distinct subfamilies, and our structural and functional analysis of Escherichia coli GppA and Helicobacter pylori PPX/GppA reveals unique properties of each homolog. These results explain how each homolog possesses its distinct functionality.


Subject(s)
Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Guanosine Pentaphosphate/metabolism , Helicobacter pylori/enzymology , Helicobacter pylori/metabolism , Amino Acid Sequence , Guanosine Pentaphosphate/chemistry , Models, Molecular , Molecular Structure , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Sequence Alignment
2.
Clin Vaccine Immunol ; 24(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29046309

ABSTRACT

We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever.


Subject(s)
Drug Carriers , Gene Expression , Genetic Vectors , O Antigens/immunology , Polysaccharides, Bacterial/genetics , Shigella Vaccines/immunology , Shigella flexneri/immunology , Typhoid-Paratyphoid Vaccines/genetics , Animals , Antibodies, Bacterial/blood , Bacteriophages/genetics , Cloning, Molecular , Disease Models, Animal , Dysentery, Bacillary/prevention & control , Female , Genomic Instability , Mice, Inbred BALB C , O Antigens/biosynthesis , O Antigens/genetics , Salmonella typhi/genetics , Salmonella typhi/immunology , Shigella Vaccines/genetics , Shigella flexneri/genetics , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
3.
Pathog Dis ; 74(8)2016 11.
Article in English | MEDLINE | ID: mdl-27655911

ABSTRACT

Typhoid fever and shigellosis cause high morbidity and mortality worldwide, yet no anti-Shigella vaccine is currently available. However, to protect against typhoid fever, an approved vaccine, based on the attenuated Salmonella enterica serovar Typhi strain Ty21a is available. We have investigated Ty21a as a live oral vaccine vector for expression of heterologous foreign antigens to protect against other diseases (e.g. shigellosis, anthrax, and plague). Shigella LPS is a potent vaccine antigen for serotype-specific protection against Shigellae. We previously reported the construction of a Ty21a derivative expressing S. sonnei O-antigen by insertion of a large (∼12.5 kb) operon comprising the S. sonnei O-antigen biosynthetic genes into a targeted site within the Ty21a chromosome using modified λ red recombineering methods. In the current study, S. dysenteriae 1 O-antigen biosynthetic genes from 2 separate genetic loci, rfp and rfb were assembled and inserted into the Ty21a chromosome by λ red-mediated recombineering to construct strain Ty21a-Sd. To obtain a high level of heterologous LPS expression, the native upstream promoter was replaced with the constitutive lpp promoter, which resulted in Ty21a-Sdl with enhanced heterologous LPS expression. Both Ty21a-Sd and Ty21a-Sdl elicited significant serum antibody responses in mice against both Ty21a and this heterologous Shigella LPS, and conferred protection against virulent S. dysenteriae 1 challenge. This work represents progress toward the goal of a safe and effective vaccine against Shigella.

4.
PLoS One ; 11(9): e0163511, 2016.
Article in English | MEDLINE | ID: mdl-27673328

ABSTRACT

The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain.

5.
Genome Announc ; 1(4)2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23969054

ABSTRACT

Attenuated Salmonella enterica serovar Typhi strain Ty21a is an important vaccine for controlling typhoid fever and serves as an oral vector for delivering heterologous antigens. The key attenuating features of this randomly mutated strain remain in question. Genome sequencing has revealed 679 single nucleotide polymorphisms (SNPs), and will help define alterations contributing to Ty21a safety and immunogenicity.

6.
Int J Med Microbiol ; 303(3): 105-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23474241

ABSTRACT

Live, attenuated Salmonella enterica serovar Typhi strain Ty21a, a licensed oral typhoid fever vaccine, has also been employed for use as a vector to deliver protective antigens of Shigella and other pathogens. Importantly, lipopolysaccharide (LPS) alone has been shown to be a potent antigen for specific protection against shigellosis. We reported previously the plasmid cloning of heterologous LPS biosynthetic genes and the expression in Ty21a of either S. sonnei or of S. dysenteriae 1 LPS's. The resulting plasmids encoding Shigella LPS's were reasonably stable for >50 generations of growth in nonselective media, but still contained an antibiotic resistance marker that is objectionable to vaccine regulatory authorities. Deletion of this antibiotic-resistance marker inexplicably resulted in significant plasmid instability. Thus, we sought a method to insert the large ∼12kb S. sonnei LPS gene region into the chromosome, that would allow for subsequent removal of a selectable marker and would result in 100% genetic stability. Toward this objective, we optimized an existing recombination method to mediate the insertion of a ∼12kb region encoding the S. sonnei LPS genes into the Ty21a genome in a region that is nonfunctional due to mutation. The resulting strain Ty21a-Ss simultaneously expresses both homologous Ty21a and heterologous S. sonnei O-antigens. This chromosomal insert was shown to be 100% genetically stable in vitro and in vivo. Moreover, Ty21a-Ss elicited strong dual anti-LPS serum immune responses and 100% protection in mice against a virulent S. sonnei challenge. This new vaccine candidate, absolutely stable for vaccine manufacture, should provide combined protection against enteric fevers due to Salmonella serovar Typhi as shown previously (and some Paratyphi infections) and against shigellosis due to S. sonnei.


Subject(s)
Bacterial Vaccines/immunology , Drug Carriers/administration & dosage , Drug Delivery Systems , O Antigens/biosynthesis , Salmonella typhi/genetics , Shigella sonnei/immunology , Animals , Antibodies, Bacterial/blood , Bacterial Vaccines/administration & dosage , Biosynthetic Pathways , Chromosomes, Bacterial , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Disease Models, Animal , Dysentery, Bacillary/prevention & control , Female , Genomic Instability , Mice , Mice, Inbred BALB C , Molecular Biology/methods , Molecular Sequence Data , O Antigens/genetics , Plasmids , Sequence Analysis, DNA , Shigella sonnei/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
7.
J Mol Biol ; 409(2): 146-58, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21440558

ABSTRACT

Vibrio cholerae relies on two main virulence factors--toxin-coregulated pilus (TCP) and cholera toxin--to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Cholera/prevention & control , Intestines/microbiology , Transcription Factors/chemistry , Transcription Factors/immunology , Vibrio cholerae/pathogenicity , Animals , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Cholera/immunology , Crystallography, X-Ray , Disease Models, Animal , Female , Immunoblotting , Mice , Mice, Inbred BALB C , Mutagenesis, Site-Directed , Mutation/genetics , Peptide Fragments/immunology , Peptide Fragments/metabolism , Peptide Library , Protein Conformation , Survival Rate , Transcription Factors/genetics
8.
J Bacteriol ; 191(18): 5669-79, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19592588

ABSTRACT

Vibrio cholerae is highly motile by the action of a single polar flagellum. The loss of motility reduces the infectivity of V. cholerae, demonstrating that motility is an important virulence factor. FlrC is the sigma-54-dependent positive regulator of flagellar genes. Recently, the genes VC2206 (flgP) and VC2207 (flgO) were identified as being regulated by FlrC via a microarray analysis of an flrC mutant (D. C. Morris, F. Peng, J. R. Barker, and K. E. Klose, J. Bacteriol. 190:231-239, 2008). FlgP is reported to be an outer membrane lipoprotein required for motility that functions as a colonization factor. The study reported here focuses on the characterization of flgO, the first gene in the flgOP operon. We show that FlgO and FlgP are important for motility, as strains with mutations in the flgOP genes have reduced motility phenotypes. The flgO and flgP mutant populations display fewer motile cells as well as reduced numbers of flagellated cells. The flagella produced by the flgO and flgP mutant strains are shorter in length than the wild-type flagella, which can be restored by inhibiting rotation of the flagellum. FlgO is an outer membrane protein that localizes throughout the membrane and not at the flagellar pole. Although FlgO and FlgP do not specifically localize to the flagellum, they are required for flagellar stability. Due to the nature of these motility defects, we established that the flagellum is not sufficient for adherence; rather, motility is the essential factor required for attachment and thus colonization by V. cholerae O1 of the classical biotype. This study reveals a novel mechanism for which the outer membrane proteins FlgO and FlgP function in motility to mediate flagellar stability and influence attachment and colonization.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Flagella/metabolism , Gene Expression Regulation, Bacterial , Vibrio cholerae/physiology , Animals , Animals, Newborn , Bacterial Adhesion , Bacterial Outer Membrane Proteins/genetics , Cell Line , Cholera/microbiology , Cholera/pathology , Culture Media , Humans , Mice , Microscopy, Electron, Transmission , Molecular Sequence Data , Movement , Mutation , Oligonucleotide Array Sequence Analysis , Vibrio cholerae/genetics , Vibrio cholerae/growth & development , Vibrio cholerae/pathogenicity
9.
Microbiology (Reading) ; 155(Pt 7): 2353-2364, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19389772

ABSTRACT

A novel protective monoclonal antibody (mAb) that recognizes a lipopolysaccharide (LPS) epitope common between serotypes Ogawa and Inaba of the O1 serogroup of Vibrio cholerae was characterized and the potential to develop peptide mimics of this protective LPS epitope was investigated. mAb 72.1 recognizes both Ogawa and Inaba LPS and it is vibriocidal and protective in passive immunization against infection by strains of both serotypes. The cDNA-derived amino acid sequence of mAb 72.1 is closely related to the previously characterized mAb ZAC-3, which is thought to recognize an epitope in the lipid A core region of O1 LPS. In an attempt to develop a peptide mimic-based vaccine against V. cholerae, phage display libraries were screened with mAb 72.1 and 11 peptide mimics were identified. Remarkably, all of the peptide sequences identified from linear phage display libraries contained two cysteine residues, suggesting that mAb 72.1 preferentially binds to peptides constrained with a disulphide bond. One of the peptide mimics was immunologically characterized. Although immunization of mice with this peptide mimic conjugated to KLH elicited antibodies against the peptide itself, these antibodies did not cross-react with Ogawa or Inaba LPS. Effectiveness of a peptide mimic as a vaccine may depend on how well the peptide can mimic the carbohydrate interactions when binding to the anti-carbohydrate antibody. Thus, investigating how peptides and LPS bind to mAb 72.1 may be useful in improving current peptide mimics or designing more effective peptide mimics. Identification and characterization of novel protective anti-LPS antibodies may be useful in studying protective epitopes of LPS, which may help develop LPS-based therapeutics against V. cholerae.


Subject(s)
Antibodies, Monoclonal/immunology , Cholera/immunology , Epitopes/immunology , Vibrio cholerae O1/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Cysteine/immunology , Female , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Lipopolysaccharides/immunology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptide Library , Sequence Analysis, DNA
10.
J Biol Chem ; 282(46): 33805-33816, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-17881351

ABSTRACT

As an alternative approach toward the development of a cholera vaccine, the potential of peptide mimics of Vibrio cholerae lipopolysaccharide (LPS) to elicit cross-reactive immune responses against LPS was investigated. Two closely related protective monoclonal antibodies, S-20-4 and A-20-6, which are specific for Ogawa O-antigen (O-specific polysaccharide; O-SP) of V. cholerae O1, were used as the target antibodies (Abs) to pan phage display libraries under different elution conditions. Six phage clones identified from S-20-4 panning showed significant binding to both S-20-4 and A-20-6. Thus, it is likely that these phage-displayed peptides mimic an important conformational epitope of Ogawa antigens and are not simply functionally recognized by S-20-4. Each of the six phage clones that could bind to both monoclonal antibodies also competed with LPS for binding to S-20-4, suggesting that the peptides bind close to the paratope of the Ab. In order to predict how these peptide mimics interact with S-20-4 compared with its carbohydrate counterpart, one peptide mimic, 4P-8, which is one of the highest affinity binders and shares motifs with several other peptide mimics, was selected for further studies using computer modeling methods and site-directed mutagenesis. These studies suggest that 4P-8 is recognized as a hairpin structure that mimics some O-SP interactions with S-20-4 and also makes unique ligand interactions with S-20-4. In addition, 4P-8-KLH was able to elicit anti-LPS Abs in mice, but the immune response was not vibriocidal or protective. However, boosting with 4P-8-KLH after immunizing with LPS prolonged the LPS-reactive IgG and IgM Ab responses as well as vibriocidal titers and provided a much greater degree of protection than priming with LPS alone.


Subject(s)
Epitopes/chemistry , Peptides/chemistry , Vibrio cholerae/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Binding, Competitive , Female , Hydrogen-Ion Concentration , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Mutagenesis, Site-Directed , O Antigens/chemistry , Peptide Library
SELECTION OF CITATIONS
SEARCH DETAIL
...