Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903871

ABSTRACT

Genetic improvement for nitrogen use efficiency (NUE) can play a very crucial role in sustainable agriculture. Root traits have hardly been explored in major wheat breeding programs, more so in spring germplasm, largely because of the difficulty in their scoring. A total of 175 advanced/improved Indian spring wheat genotypes were screened for root traits and nitrogen uptake and nitrogen utilization at varying nitrogen levels in hydroponic conditions to dissect the complex NUE trait into its component traits and to study the extent of variability that exists for those traits in Indian germplasm. Analysis of genetic variance showed a considerable amount of genetic variability for nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE), and most of the root and shoot traits. Improved spring wheat breeding lines were found to have very large variability for maximum root length (MRL) and root dry weights (RDW) with strong genetic advance. In contrast to high nitrogen (HN), a low nitrogen (LN) environment was more effective in differentiating wheat genotypes for NUE and its component traits. Shoot dry weight (SDW), RDW, MRL, and NUpE were found to have a strong association with NUE. Further study revealed the role of root surface area (RSA) and total root length (TRL) in RDW formation as well as in nitrogen uptake and therefore can be targeted for selection to further the genetic gain for grain yield under high input or sustainable agriculture under limited inputs.

2.
Front Genet ; 13: 984720, 2022.
Article in English | MEDLINE | ID: mdl-36437925

ABSTRACT

A Genome-wide association (GWAS) study was conducted for phosphorous (P)-use responsive physiological traits in bread wheat at the seedling stage under contrasting P regimes. A panel of 158 diverse advanced breeding lines and released varieties, and a set of 10,800 filtered single nucleotide polymorphism (SNP) markers were used to study marker-trait associations over the eight shoot traits. Principle component analysis separated the two environments (P regimes) because of the differential response of the traits indicating the essentiality of the separate breeding programmes for each environment. Significant variations for genotypic, environmental, and genotype × environment (GEI) effects were observed for all the traits in the combined analysis of variance with moderately high broad sense heritability traits (0.50-0.73). With the different algorithms of association mapping viz., BLINK, FarmCPU, and MLM, 38 unique QTLs under non-limiting P (NLP) and 45 QTLs for limiting P (LP) conditions for various shoot traits were identified. Some of these QTLs were captured by all three algorithms. Interestingly, a Q.iari.dt.sdw.1 on chromosome 1D was found to explain the significant variations in three important physiological traits under non-limiting phosphorus (NLP) conditions. We identified the putative candidate genes for QTLs namely Q.iari.dt.chl.1, Q.iari.dt.sdw.16, Q.iari.dt.sdw.9 and Q.iari.dt.tpc.1 which are potentially involved in the mechanism regulating phosphorus use efficiency through improved P absorption due to improved root architectural traits and better mobilization such as sulfotransferase involved in postembryonic root development, WALLS ARE THIN1 (WAT1), a plant-specific protein that facilitates auxin export; lectin receptor-like kinase essentially involved in plant development, stress response during germination and lateral root development and F-box component of the SKP-Cullin-F box E3 ubiquitin ligase complex and strigolactone signal perception. Expression profiling of putative genes located in identified genomic regions against the wheat expression atlas revealed their significance based on the expression of these genes for stress response and growth development processes in wheat. Our results thus provide an important insight into understanding the genetic basis for improving PUE under phosphorus stress conditions and can shape the future breeding programme by developing and integrating molecular markers for these difficult-to-score important traits.

3.
Saudi J Biol Sci ; 29(4): 2800-2810, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531211

ABSTRACT

The realization of grain yield in wheat is decided by source-sink balance under prevailing environmental conditions. Management conditions like changing the sowing time influence the source-sink capacity through modification in agronomic traits. Therefore, this experiment was conducted to decipher the influence of spike architectural traits (SATs) on grain yield and to open avenues for further grain yield enhancement. Comparatively early sowing over timely sowing gives the advantage of realizing higher grain yield with a positive relationship with SATs namely spike length, spikelets per spike, individual spike weight, individual grain weight, number of grains per spikelet, grain length, and grain width of upper and lower spike portion. Confirmatory factorial analysis revealed that spike length, spikelets per spike, individual spike weight, grains per spikelet were having a significant effect in deciding grain yield in early sown. The presence of a significant effect of genotype by environment interaction over grain yield and SATs allows the exploitation of available genotypic and environmental variability for further yield enhancement. GGE analysis on transformed and standardized grain yield-trait (GY-trait) combinations was used in the selection of genotypes having high GY-trait combinations for both sowing times. In early sowing, WG 11 was the best for high GY with high individual spike weight; grain length and grain width at lower and upper parts of the spike; and shorter days to 50% flowering. Genotypes exclusively having the high GY-trait combination along with low values of remaining GY-trait combinations were also selected with genotype focused GGE approach.

4.
Front Plant Sci ; 12: 719394, 2021.
Article in English | MEDLINE | ID: mdl-34630466

ABSTRACT

Knowledge about the yield gain over the years due to associated changes in the yield component traits is essential for a critical understanding of yield-limiting factors. To estimate genetic gain in grain yield (GY) and component agronomic traits of wheat varieties released between 1900 and 2016 for northwestern plain zone (NWPZ) of India and to identify agronomic and/or genetic basis of the realized gains, two sets of wheat varieties comprising mega varieties and two recently developed varieties were evaluated under timely sown, tilled, and early sown conservation agriculture (CA) conditions for four consecutive years under irrigated conditions. The average annual genetic gain in GY since 1,905 under timely sown irrigated conditions was found to be 0.544% yr-1 over the average of all varieties and 0.822% yr-1 (24.27 kg ha-1 yr-1) over the first released variety, NP4. The realized mean yield increased from 2,950 kg ha-1 of the variety NP4 released in 1,905-5,649 kg ha-1 of HD3086 released in 2014. Regression analysis revealed a linear reduction in height and peduncle length (PL) over the years with a simultaneous and linear increase in biomass at the rate of 43.9 kg ha-1 yr-1 or relatively at 0.368% yr-1 mainly because of delayed heading and increased crop duration. Regression analysis showed no linear trend for tiller number and thousand-grain weight (TGW). Though harvest index (HI) was found to linearly increase relatively at the rate of 0.198% per annum, polynomial regression improved the fitness of data with the indication of no increase in HI since 1982. Interestingly, genetic gain evaluation under early sown CA conditions for 4 years showed similar relative gain (RG) [a relative improvement in varieties across breeding periods (BP)] (0.544% yr-1) but with a higher absolute value (29.28 kg ha-1 yr-1). Major mega varieties like Kalyan Sona, HD2009, PBW 343, HD2967, and HD3086, which occupied a comparatively larger area, were found highly plastic to the improvements in the production environment under timely sown conditions.

5.
PLoS One ; 16(10): e0255840, 2021.
Article in English | MEDLINE | ID: mdl-34597303

ABSTRACT

The root system architectures (RSAs) largely decide the phosphorus use efficiency (PUE) of plants by influencing the phosphorus uptake. Very limited information is available on wheat's RSAs and their deciding factors affecting phosphorus uptake efficiency (PupE) due to difficulties in adopting scoring values used for evaluating root traits. Based on our earlier research experience on nitrogen uptake efficiency screening under, hydroponics and soil-filled pot conditions, a comprehensive study on 182 Indian bread wheat genotypes was carried out under hydroponics with limited P (LP) and non-limiting P (NLP) conditions. The findings revealed a significant genetic variation, root traits correlation, and moderate to high heritability for RSAs traits namely primary root length (PRL), total root length (TRL), total root surface area (TSA), root average diameter (RAD), total root volume (TRV), total root tips (TRT) and total root forks (TRF). In LP, the expressions of TRL, TRV, TSA, TRT and TRF were enhanced while PRL and RAD were diminished. An almost similar pattern of correlations among the RSAs was also observed in both conditions except for RAD. RAD exhibited significant negative correlations with PRL, TRL, TSA, TRT and TRF under LP (r = -0.45, r = -0.35, r = -0.16, r = -0.30, and r = -0.28 respectively). The subclass of TRL, TSA, TRV and TRT representing the 0-0.5 mm diameter had a higher root distribution percentage in LP than NLP. Comparatively wide range of H' value i.e. 0.43 to 0.97 in LP than NLP indicates that expression pattern of these traits are highly influenced by the level of P. In which, RAD (0.43) expression was reduced in LP, and expressions of TRF (0.91) and TSA (0.97) were significantly enhanced. The principal component analysis for grouping of traits and genotypes over LP and NLP revealed a high PC1 score indicating the presence of non-crossover interactions. Based on the comprehensive P response index value (CPRI value), the top five highly P efficient wheat genotypes namely BW 181, BW 103, BW 104, BW 143 and BW 66, were identified. Considering the future need for developing resource-efficient wheat varieties, these genotypes would serve as valuable genetic sources for improving P efficiency in wheat cultivars. This set of genotypes would also help in understanding the genetic architecture of a complex trait like P use efficiency.


Subject(s)
Edible Grain/metabolism , Phosphorus/metabolism , Plant Roots/anatomy & histology , Plant Roots/metabolism , Triticum/metabolism , Bread/microbiology , Chromosome Mapping , Edible Grain/growth & development , Genotype , Hydroponics/methods , India , Nitrogen/metabolism , Plant Roots/growth & development , Principal Component Analysis , Quantitative Trait Loci/genetics , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...