Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 266: 331-345, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-28989087

ABSTRACT

Mixtures of surfactants can result in formation of various structures like micelles, vesicles and inverted micelles. Catanionic vesicular systems are preferred on account of their ease of formation and thermodynamic stability. Furthermore, their charge and surfactant properties render them as useful vehicles for DNA delivery and cytotoxic compounds. They suffer from disadvantages of being leaky and yielding low encapsulation efficiencies which are averse to drug delivery purposes. Extensive efforts are being undertaken to overcome these barriers and render these vesicles amenable to spatial placement and temporal delivery of drugs. This manuscript addresses diverse aspects of catanionic vesicles including their formation, fabrication and stability. The manuscript focuses further on applications of catanionic vesicles in nanodrug delivery. Novel trends in the field of catanionics with respect to bio-compatibility and novel technologies developed using these systems have also been reviewed. An attempt has been made to compile catanionic systems reported in literature detailing surfactants and therapeutic agents employed to aid understanding and yield information of various facets that drive fabrication and potential utility of these systems in therapeutics.


Subject(s)
Drug Delivery Systems , Animals , Biophysical Phenomena , Drug Delivery Systems/trends , Humans , Nanomedicine/trends
2.
AAPS PharmSciTech ; 17(3): 553-71, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27068527

ABSTRACT

Lipid-based nanoformulations have been extensively investigated for improving oral efficacy of plethora of drugs. Chemotherapeutic agents remain a preferred option for effective management of cancer; however, most chemotherapeutic agents suffer from limitation of poor oral bioavailability that is associated with their physicochemical properties. Drug delivery via lipid-based nanosystems possesses strong rational and potential for improving oral bioavailability of such anti-cancer molecules through various mechanisms, viz. improving their gut solubilisation owing to micellization, improving mucosal permeation, improving lymphatic uptake, inhibiting intestinal metabolism and/or inhibiting P-glycoprotein efflux of molecules in the gastrointestinal tract. Various in vitro characterization techniques have been reported in literature that aid in getting insights into mechanisms of lipid-based nanodevices in improving oral efficacy of anti-cancer drugs. The review focuses on different characterization techniques that can be employed for evaluation of lipid-based nanosystems and their role in effective anti-cancer drug delivery.


Subject(s)
Drug Delivery Systems/methods , Lipids/pharmacokinetics , Lipolysis/physiology , Nanoparticles/metabolism , Animals , Biological Availability , Chemistry, Pharmaceutical , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Evaluation, Preclinical/methods , Humans , Lipids/administration & dosage , Lipids/chemistry , Lipolysis/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry
3.
Cell Oncol (Dordr) ; 37(5): 339-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25204961

ABSTRACT

PURPOSE: Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. METHODS: Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. RESULTS: In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. CONCLUSIONS: Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.


Subject(s)
Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Cycle/drug effects , Nanoparticles/administration & dosage , Animals , Antineoplastic Agents/chemistry , Cations/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Flow Cytometry , Humans , Lecithins/chemistry , Mice, Inbred C57BL , Nanoparticles/chemistry , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size , Tumor Burden/drug effects
4.
Biomed Pharmacother ; 68(4): 429-38, 2014 May.
Article in English | MEDLINE | ID: mdl-24721327

ABSTRACT

Tamoxifen (TMX), an estrogen receptor (ER) antagonist, incorporated at surface of liposomes loaded with Doxorubicin (DOX), was hypothesized to serve as ligand for targeting overexpressed ERs on surface and cytosol of breast cancer cells, in addition to its synergism with DOX in killing MCF-7 cells. The TMX-DOX liposomes demonstrated mean size of 188.8±2.2nm and positive potential of+47mV, both suitable for better cellular interaction. TMX-DOX liposomes sustained DOX release in vitro (25.9%) in pH 7.4 at 48h, in comparison with 64.5% DOX release at pH 5.5. In vitro cell line studies demonstrated that TMX-DOX liposomes were more cytotoxic to ER+ve MCF-7 cells as compared to DOX liposomes, DOX solution and TMX-DOX solution (P<0.05). However, there was no statistical difference in cyto-toxicity of TMX-DOX liposomes and DOX liposomes towards ER-ve MDA-MB-231 cells. Flow cytometry and confocal studies in MCF-7 cells revealed greater cell and nuclear uptake of DOX, with TMX guided liposomes as compared to DOX liposomes and DOX solution. TMX-DOX liposomes demonstrated significantly increased inhibition of MCF-7 cell based tumor growth in nude mice (P<0.05) in comparison to DOX solution and DOX liposomes, indicative of target specificity and higher DOX accumulation at tumor site.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Drug Delivery Systems , Receptors, Estrogen/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/pathology , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Drug Synergism , Female , Humans , Ligands , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Particle Size , Polyethylene Glycols/administration & dosage , Tamoxifen/administration & dosage , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...