Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 472: 134458, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703679

ABSTRACT

Diclofenac (DCF) is an environmentally persistent, nonsteroidal anti-inflammatory drug (NSAID) with thyroid disrupting properties. Electrochemical advanced oxidation processes (eAOPs) can efficiently remove NSAIDs from wastewater. However, eAOPs can generate transformation products (TPs) with unknown chemical and biological characteristics. In this study, DCF was electrochemically degraded using a boron-doped diamond anode. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry was used to analyze the TPs of DCF and elucidate its potential degradation pathways. The biological impact of DCF and its TPs was evaluated using the Xenopus Eleutheroembryo Thyroid Assay, employing a transgenic amphibian model to assess thyroid axis activity. As DCF degradation progressed, in vivo thyroid activity transitioned from anti-thyroid in non-treated samples to pro-thyroid in intermediately treated samples, implying the emergence of thyroid-active TPs with distinct modes of action compared to DCF. Molecular docking analysis revealed that certain TPs bind to the thyroid receptor, potentially triggering thyroid hormone-like responses. Moreover, acute toxicity occurred in intermediately degraded samples, indicating the generation of TPs exhibiting higher toxicity than DCF. Both acute toxicity and thyroid effects were mitigated with a prolonged degradation time. This study highlights the importance of integrating in vivo bioassays in the environmental risk assessment of novel degradation processes.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Thyroid Gland , Water Pollutants, Chemical , Animals , Diclofenac/toxicity , Diclofenac/chemistry , Diclofenac/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Risk Assessment , Electrochemical Techniques , Molecular Docking Simulation , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Endocrine Disruptors/metabolism , Xenopus laevis , Diamond/chemistry , Oxidation-Reduction , Boron/toxicity , Boron/chemistry
2.
Environ Int ; 176: 107992, 2023 06.
Article in English | MEDLINE | ID: mdl-37244003

ABSTRACT

Conventional water treatment methods are not efficient in eliminating endocrine disrupting compounds (EDCs) in wastewater. Electrochemical Advanced Oxidation Processes (eAOPs) offer a promising alternative, as they electro-generate highly reactive species that oxidize EDCs. However, these processes produce a wide spectrum of transformation products (TPs) with unknown chemical and biological properties. Therefore, a comprehensive chemical and biological evaluation of these remediation technologies is necessary before they can be safely applied in real-life situations. In this study, 17α-ethinylestradiol (EE2), a persistent estrogen, was electrochemically degraded using a boron doped diamond anode with sodium sulfate (Na2SO4) and sodium chloride (NaCl) as supporting electrolytes. Ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the quantification of EE2 and the identification of TPs. Estrogenic activity was assessed using a transgenic medaka fish line. At optimal operating conditions, EE2 removal reached over 99.9% after 120 min and 2 min, using Na2SO4 and NaCl, respectively. The combined EE2 quantification and in vivo estrogenic assessment demonstrated the overall estrogenic activity was consistently reduced with the degradation of EE2, but not completely eradicated. The identification and time monitoring of TPs showed that the radical agents readily oxidized the phenolic A-ring of EE2, leading to the generation of hydroxylated and/or halogenated TPs and ring-opening products. eAOP revealed to be a promising technique for the removal of EE2 from water. However, caution should be exercised with respect to the generation of potentially toxic TPs.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Ethinyl Estradiol/analysis , Ethinyl Estradiol/chemistry , Ethinyl Estradiol/metabolism , Sodium Chloride , Water Pollutants, Chemical/analysis , Estrone , Wastewater , Endocrine Disruptors/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...