Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(44): 21291-21301, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31667477

ABSTRACT

In the formulation of an active enzyme enclosed in a matrix for controlled delivery, it is a challenge to achieve a high protein load and to ensure high activity of the protein. For the first time to our knowledge, we report the use of a highly swollen lipid sponge (L3) phase for encapsulation of the large active enzyme, ß-galactosidase (ß-gal, 238 kDa). This enzyme has large relevance for applications in, e.g. the production of lactose free milk products. The formulation consisted of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) stabilised by polysorbate 80 (P80). The advantage of this type of matrix is that it can be produced on a large scale with a fairly simple and mild process as the system is in practice self-dispersing, yet it has a well-defined internal nano-structure. Minor effects on the sponge phase structure due to the inclusion of the enzyme were observed using small angle X-ray scattering (SAXS). The effect of encapsulation on the enzymatic activity and kinetic characteristics of ß-galactosidase activity was also investigated and can be related to the enzyme stability and confinement within the lipid matrix. The encapsulated ß-galactosidase maintained its activity for a significantly longer time when compared to the free solution at the same temperature. Differences in the particle size and charge of sponge-like nanoparticles (L3-NPs) with and without the enzyme were analysed by dynamic light scattering (DLS) and zeta-potential measurements. Moreover, all the initial ß-galactosidase was encapsulated within L3-NPs as revealed by size exclusion chromatography.


Subject(s)
Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Kluyveromyces/enzymology , Nanoparticles/chemistry , beta-Galactosidase/chemistry , Caprylates/chemistry , Enzyme Stability , Glycerides/chemistry , Polysorbates/chemistry , Structure-Activity Relationship
2.
Biophys J ; 117(5): 829-843, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31422820

ABSTRACT

Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.


Subject(s)
Aspartic Acid Proteases/metabolism , Enzymes, Immobilized/metabolism , Lipids/chemistry , Liquid Crystals/chemistry , Area Under Curve , Freeze Drying , Glycerol/pharmacology , Nanoparticles/chemistry , Particle Size , Scattering, Radiation , Spectrum Analysis, Raman
3.
Biotechnol Prog ; 35(3): e2806, 2019 05.
Article in English | MEDLINE | ID: mdl-30884190

ABSTRACT

A hybrid coating based on multilayers of proteins and biopolymers was developed to enhance the protection performance of alginate microbeads against acidic conditions for delivery of probiotics (Lactobacillus rhamnosus GG). Zeta potential measurements and quartz crystal microbalance with dissipation confirmed layer-by-layer deposition of protein-polymer layers. The stability of protein-based coatings during simulated gastric fluid (SGF) treatment was monitored by microscopy. Protein-coated microbeads were partially dismantled, whereas polymer-coated microbeads were intact after a sequential treatment in simulated gastric and intestinal fluids. This suggests that hybrid formulation offers an advantage over the coatings based on biopolymer multilayers in terms of better release of bacteria. Uncoated alginate microbeads completely dissolved and could not protect bacteria after SGF treatment whereas microbeads with hybrid coating showed increased physical stability and a modest decrease of culturability of 3.8 log units. Therefore, this work provides a concept for future protein-based hybrid coatings for bacterial delivery systems.


Subject(s)
Alginates/chemistry , Biopolymers/chemistry , Drug Compounding/instrumentation , Lacticaseibacillus rhamnosus/chemistry , Probiotics/chemistry , Drug Compounding/methods , Lacticaseibacillus rhamnosus/growth & development , Microbial Viability , Microspheres
4.
Soft Matter ; 11(40): 7888-98, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26327613

ABSTRACT

Hard colloidal nanoparticles (e.g. partly hydrophobised silica), are known to make foams with very high foam-stability. Nanoparticles can also be produced from proteins by enzymatic cross-linking. Such protein based particles are more suitable for food applications, but it is not known if they provide Pickering foam stabilisation to the same extent as hard colloidal particles. α-Lactalbumin (α-LA) was cross-linked with either microbial transglutaminase (mTG) or horseradish peroxidase (HRP) to produce α-LA/mTG and α-LA/HRP nanoparticles. With both enzymes a range of nanoparticles were produced with hydrodynamic radii ranging from 20-100 nm. The adsorption of nanoparticles to the air-water interface was probed by increase in surface pressure (Π) with time. In the beginning of the Π versus time curves, there was a lag time of 10-200 s, for nanoparticles with Rh of 30-100 nm, respectively. A faster increase of Π with time was observed by increasing the ionic strength (I = 0-125 mM). The foam-ability of the nanoparticles was also found to increase with increasing ionic strength. At a fixed I, the foam-ability of the nanoparticles decreased with increasing size while their foam-stability increased. Foams produced by low-shear whipping were found to be 2 to 6 times more stable for nanoparticles than for monomeric α-LA (Rh≈ 2 nm). At an ionic strength of 125 mM ionic strength and protein concentration ≥ 10 g L(-1), the foam-stability of α-LA/mTG nanoparticles (Rh = 100 nm, ρapp = 21.6 kg m(-3)) was 2-4 times higher than α-LA/HRP nanoparticles (Rh = 90 nm, ρapp = 10.6 kg m(-3)). This indicated that foam-stablity of nanoparticles is determined not only by size but also by differences in mesoscale structure. So, indeed enzymatic cross-linking of proteins to make nanoparticles is moving a step towards particle like behavior e.g. slower adsorption and higher foam stability. However, the cross-link density should be further increased to obtain hard particle-like rigidity and foam-stability.


Subject(s)
Cross-Linking Reagents/chemistry , Lactalbumin/chemistry , Adsorption , Horseradish Peroxidase/chemistry , Nanoparticles/chemistry , Osmolar Concentration , Protein Stability , Transglutaminases/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...