Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 133(7): 917-930, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38441303

ABSTRACT

BACKGROUND AND AIMS: Plant breeders are increasingly turning to crop wild relatives (CWRs) to ensure food security in a rapidly changing environment. However, CWR populations are confronted with various human-induced threats, including hybridization with their nearby cultivated crops. This might be a particular problem for wild coffee species, which often occur near coffee cultivation areas. Here, we briefly review the evidence for wild Coffea arabica (cultivated as Arabica coffee) and Coffea canephora (cultivated as Robusta coffee) and then focused on C. canephora in the Yangambi region in the Democratic Republic of the Congo. There, we examined the geographical distribution of cultivated C. canephora and the incidence of hybridization between cultivated and wild individuals within the rainforest. METHODS: We collected 71 C. canephora individuals from home gardens and 12 C. canephora individuals from the tropical rainforest in the Yangambi region and genotyped them using genotyping-by-sequencing (GBS). We compared the fingerprints with existing GBS data from 388 C. canephora individuals from natural tropical rainforests and the INERA Coffee Collection, a Robusta coffee field gene bank and the most probable source of cultivated genotypes in the area. We then established robust diagnostic fingerprints that genetically differentiate cultivated from wild coffee, identified cultivated-wild hybrids and mapped their geographical position in the rainforest. KEY RESULTS: We identified cultivated genotypes and cultivated-wild hybrids in zones with clear anthropogenic activity, and where cultivated C. canephora in home gardens may serve as a source for crop-to-wild gene flow. We found relatively few hybrids and backcrosses in the rainforests. CONCLUSIONS: The cultivation of C. canephora in close proximity to its wild gene pool has led to cultivated genotypes and cultivated-wild hybrids appearing within the natural habitats of C. canephora. Yet, given the high genetic similarity between the cultivated and wild gene pool, together with the relatively low incidence of hybridization, our results indicate that the overall impact in terms of risk of introgression remains limited so far.


Subject(s)
Coffea , Gene Flow , Coffea/genetics , Democratic Republic of the Congo , Crops, Agricultural/genetics , Hybridization, Genetic , Rainforest , Genotype
2.
Heredity (Edinb) ; 130(3): 145-153, 2023 03.
Article in English | MEDLINE | ID: mdl-36596880

ABSTRACT

Degradation and regeneration of tropical forests can strongly affect gene flow in understorey species, resulting in genetic erosion and changes in genetic structure. Yet, these processes remain poorly studied in tropical Africa. Coffea canephora is an economically important species, found in the understorey of tropical rainforests of Central and West Africa, and the genetic diversity harboured in its wild populations is vital for sustainable coffee production worldwide. Here, we aimed to quantify genetic diversity, genetic structure, and pedigree relations in wild C. canephora populations, and we investigated associations between these descriptors and forest disturbance and regeneration. Therefore, we sampled 256 C. canephora individuals within 24 plots across three forest categories in Yangambi (DR Congo), and used genotyping-by-sequencing to identify 18,894 SNPs. Overall, we found high genetic diversity, and no evidence of genetic erosion in C. canephora in disturbed old-growth forest, as compared to undisturbed old-growth forest. In addition, an overall heterozygosity excess was found in all populations, which was expected for a self-incompatible species. Genetic structure was mainly a result of isolation-by-distance, reflecting geographical location, with low to moderate relatedness at finer scales. Populations in regrowth forest had lower allelic richness than populations in old-growth forest and were characterised by a lower inter-individual relatedness and a lack of isolation-by-distance, suggesting that they originated from different neighbouring populations and were subject to founder effects. Wild Robusta coffee populations in the study area still harbour high levels of genetic diversity, yet careful monitoring of their response to ongoing forest degradation remains required.


Subject(s)
Coffea , Humans , Coffea/genetics , Coffee , Democratic Republic of the Congo , Forests , Genetic Variation
3.
Cogent Food Agric ; 6(1): 1789422, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-33718519

ABSTRACT

Cassava fields were prospected from two provinces of the Democratic Republic of Congo (Ituri and Haut Uélé) to evaluate the ampleness of Cassava brown streak disease (CBSD) infection. CBSD pressure was determined by assessing the incidence, severity, whitefly abundance and distribution of the disease viruses in the surveyed provinces. A duplex RT-PCR was performed for the simultaneous detection of Ugandan Cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) on 56 cassava leaves sampled in the study area. Our results show a high field CBSD incidence contrasted to a low severity in both provinces. CBSD severity was similar in both provinces (mean disease severity 2). High densities of whitefly were recorded in Ituri province (10 adult whiteflies plant-1) than in Haut Uélé where density was 5 adults plant-1. However, no relation has been found between whitefly density and CBSD incidence and severity on cassava leaf, root and stems. Molecular analysis showed the incidence of single infections of UCBSV was greater than single infections of CBSV and mixed infections of UCBSV and CBSV. Disease incidence was greater in Ituri than in Haut Uélé; molecular incidence was lower than field incidence. Our results raise the need for appropriate CBSD control strategies in DRC.

4.
Front Microbiol ; 8: 212, 2017.
Article in English | MEDLINE | ID: mdl-28261171

ABSTRACT

In the last decade, there has been an increasing focus on the implementation of plant growth-promoting (PGP) organisms as a sustainable option to compensate for poor soil fertility conditions in developing countries. Trap systems were used in an effort to isolate PGP fungi from rhizospheric soil samples collected in the region around Kisangani in the Democratic Republic of Congo. With sudangrass as a host, a highly conducive environment was created for sebacinalean chlamydospore formation inside the plant roots resulting in a collection of 51 axenically cultured isolates of the elusive genus Piriformospora (recently transferred to the genus Serendipita). Based on morphological data, ISSR fingerprinting profiles and marker gene sequences, we propose that these isolates together with Piriformospora williamsii constitute a species complex designated Piriformospora (= Serendipita) 'williamsii.' A selection of isolates strongly promoted plant growth of in vitro inoculated Arabidopsis seedlings, which was evidenced by an increase in shoot fresh weight and a strong stimulation of lateral root formation. This isolate collection provides unprecedented opportunities for fundamental as well as translational research on the Serendipitaceae, a family of fungal endophytes in full expansion.

5.
Nature ; 428(6985): 820, 2004 Apr 22.
Article in English | MEDLINE | ID: mdl-15103367

ABSTRACT

Despite strong evidence to the contrary, speculation continues that the AIDS virus, human immunodeficiency virus type 1 (HIV-1), may have crossed into humans as a result of contamination of the oral polio vaccine (OPV). This 'OPV/AIDS theory' claims that chimpanzees from the vicinity of Stanleyville--now Kisangani in the Democratic Republic of Congo--were the source of a simian immunodeficiency virus (SIVcpz) that was transmitted to humans when chimpanzee tissues were allegedly used in the preparation of OPV. Here we show that SIVcpz is indeed endemic in wild chimpanzees of this region but that the circulating virus is phylogenetically distinct from all strains of HIV-1, providing direct evidence that these chimpanzees were not the source of the human AIDS pandemic.


Subject(s)
Acquired Immunodeficiency Syndrome/etiology , Acquired Immunodeficiency Syndrome/virology , Models, Biological , Poliovirus Vaccine, Oral/adverse effects , Simian Immunodeficiency Virus/isolation & purification , Acquired Immunodeficiency Syndrome/epidemiology , Africa, Western , Animals , Feces/virology , HIV-1/genetics , Humans , Pan troglodytes/classification , Pan troglodytes/virology , Phylogeny , Poliovirus Vaccine, Oral/genetics , Reproducibility of Results , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...