Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 29(13): 4447-4459.e6, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31875552

ABSTRACT

Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.


Subject(s)
Forkhead Transcription Factors/metabolism , Kruppel-Like Transcription Factors/metabolism , Neoplasm Proteins/metabolism , Repressor Proteins/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Differentiation , Colitis/immunology , Dextran Sulfate , Humans , Mice, Knockout , Thymus Gland/cytology , Transcription, Genetic
2.
Sci Rep ; 5: 8229, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25648270

ABSTRACT

Factor induced reprogramming of fibroblasts is an orchestrated but inefficient process. At the epigenetic level, it results in drastic chromatin changes to erase the existing somatic "memory" and to establish the pluripotent state. Accordingly, alterations of chromatin regulators including Ezh2 influence iPSC generation. While the role of individual transcription factors in resetting the chromatin landscape during iPSC generation is increasingly evident, their engagement with chromatin modulators remains to be elucidated. In the current study, we demonstrate that histone methyl transferase activity of Ezh2 is required for mesenchymal to epithelial transition (MET) during human iPSC generation. We show that the H3K27me3 activity favors induction of pluripotency by transcriptionally targeting the TGF-ß signaling pathway. We also demonstrate that the Ezh2 negatively regulates the expression of pro-EMT miRNA's such as miR-23a locus during MET. Unique association of Ezh2 with c-Myc was required to silence the aforementioned circuitry. Collectively, our findings provide a mechanistic understanding by which Ezh2 restricts the somatic programme during early phase of cellular reprogramming and establish the importance of Ezh2 dependent H3K27me3 activity in transcriptional and miRNA modulation during human iPSC generation.


Subject(s)
Cellular Reprogramming , Histones/metabolism , Induced Pluripotent Stem Cells/metabolism , Polycomb Repressive Complex 2/metabolism , Cell Differentiation/genetics , Enhancer of Zeste Homolog 2 Protein , Epithelial-Mesenchymal Transition/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , MicroRNAs/genetics , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/genetics , Protein Binding , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Transforming Growth Factor beta/metabolism , SOXB1 Transcription Factors/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...