Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Lancet Glob Health ; 10(2): e246-e256, 2022 02.
Article in English | MEDLINE | ID: mdl-35063113

ABSTRACT

BACKGROUND: Household air pollution from solid fuels increases the risk of childhood pneumonia. Nasopharyngeal carriage of Streptococcus pneumoniae is a necessary step in the development of pneumococcal pneumonia. We aimed to assess the association between exposure to household air pollution and the prevalence and density of S pneumoniae carriage among children. METHODS: The Malawi Streptococcus pneumoniae Carriage and Air Pollution Exposure study was a nested, prospective, observational study of children participating in the cluster randomised controlled Cooking and Pneumonia Study (CAPS) in the Karonga Health and Demographic Surveillance System (HDSS) area in northern Malawi. CAPS compared the effects of a cleaner burning biomass-fuelled cookstove (intervention group) with traditional open-fire cooking (control group) on the incidence of pneumonia in children. Eligible children aged 6 weeks or 6 months (those recruited a 6 weeks were also followed up at age 6 months) were identified by the Karonga HDSS centre. Nasopharyngeal swabs were taken to detect S pneumoniae, and infant exposure to particulate matter with a diameter of ≤2·5 µm (PM2·5) exposure was assessed by use of a MicroPEM device. The primary outcome was the prevalence of nasopharyngeal S pneumoniae carriage in all children aged 6 months, assessed in all children with valid data on PM2·5. The effects of the intervention stoves (intention-to-treat analysis) and PM2·5 (adjusted exposure-response analysis) on the prevalence of S pneumoniae carriage were also assessed in the study children. FINDINGS: Between Nov 15, 2015, and Nov 2, 2017, 485 children were recruited (240 from the intervention group and 245 from the control group). Of all 450 children with available data at age 6 months, 387 (86% [95% CI 82-89]) were positive for S pneumoniae. Geometric mean PM2·5 exposure was 60·3 µg/m3 (95% CI 55·8-65·3) in S pneumoniae-positive children and 47·0 µg/m3 (38·3-57·7) in S pneumoniae-negative children (p=0·044). In the intention-to-treat analysis, a non-significant increase in the risk of S pneumoniae carriage was observed in intervention group children compared with control group children (odds ratio 1·36 [95% CI 0·95-1·94]; p=0·093). In the exposure-response analysis, a significant association between PM2·5 exposure and S pneumoniae carriage was observed; a one unit increase in decile of PM2·5 was found to significantly increase the risk of S pneumoniae carriage by 10% (1·10 [1·01-1·20]; p=0·035), after adjustment for age, sex, 13-valent pneumococcal conjugate vaccination status, season, current use of antibiotics, and MicroPEM run-time. INTERPRETATION: Despite the absence of effect from the intervention cookstove, household air pollution exposure was significantly associated with the prevalence of nasopharyngeal S pneumoniae carriage. These results provide empirical evidence for the potential mechanistic association between exposure to household air pollution and childhood pneumonia. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Carrier State/epidemiology , Cooking/methods , Pneumococcal Infections/epidemiology , Female , Humans , Infant , Malawi/epidemiology , Male , Nasopharynx/microbiology , Prospective Studies , Streptococcus pneumoniae/isolation & purification
2.
Lancet ; 386(10010): 2257-74, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26382241

ABSTRACT

BACKGROUND: In the Global Burden of Disease Study 2013 (GBD 2013), knowledge about health and its determinants has been integrated into a comparable framework to inform health policy. Outputs of this analysis are relevant to current policy questions in England and elsewhere, particularly on health inequalities. We use GBD 2013 data on mortality and causes of death, and disease and injury incidence and prevalence to analyse the burden of disease and injury in England as a whole, in English regions, and within each English region by deprivation quintile. We also assess disease and injury burden in England attributable to potentially preventable risk factors. England and the English regions are compared with the remaining constituent countries of the UK and with comparable countries in the European Union (EU) and beyond. METHODS: We extracted data from the GBD 2013 to compare mortality, causes of death, years of life lost (YLLs), years lived with a disability (YLDs), and disability-adjusted life-years (DALYs) in England, the UK, and 18 other countries (the first 15 EU members [apart from the UK] and Australia, Canada, Norway, and the USA [EU15+]). We extended elements of the analysis to English regions, and subregional areas defined by deprivation quintile (deprivation areas). We used data split by the nine English regions (corresponding to the European boundaries of the Nomenclature for Territorial Statistics level 1 [NUTS 1] regions), and by quintile groups within each English region according to deprivation, thereby making 45 regional deprivation areas. Deprivation quintiles were defined by area of residence ranked at national level by Index of Multiple Deprivation score, 2010. Burden due to various risk factors is described for England using new GBD methodology to estimate independent and overlapping attributable risk for five tiers of behavioural, metabolic, and environmental risk factors. We present results for 306 causes and 2337 sequelae, and 79 risks or risk clusters. FINDINGS: Between 1990 and 2013, life expectancy from birth in England increased by 5·4 years (95% uncertainty interval 5·0-5·8) from 75·9 years (75·9-76·0) to 81·3 years (80·9-81·7); gains were greater for men than for women. Rates of age-standardised YLLs reduced by 41·1% (38·3-43·6), whereas DALYs were reduced by 23·8% (20·9-27·1), and YLDs by 1·4% (0·1-2·8). For these measures, England ranked better than the UK and the EU15+ means. Between 1990 and 2013, the range in life expectancy among 45 regional deprivation areas remained 8·2 years for men and decreased from 7·2 years in 1990 to 6·9 years in 2013 for women. In 2013, the leading cause of YLLs was ischaemic heart disease, and the leading cause of DALYs was low back and neck pain. Known risk factors accounted for 39·6% (37·7-41·7) of DALYs; leading behavioural risk factors were suboptimal diet (10·8% [9·1-12·7]) and tobacco (10·7% [9·4-12·0]). INTERPRETATION: Health in England is improving although substantial opportunities exist for further reductions in the burden of preventable disease. The gap in mortality rates between men and women has reduced, but marked health inequalities between the least deprived and most deprived areas remain. Declines in mortality have not been matched by similar declines in morbidity, resulting in people living longer with diseases. Health policies must therefore address the causes of ill health as well as those of premature mortality. Systematic action locally and nationally is needed to reduce risk exposures, support healthy behaviours, alleviate the severity of chronic disabling disorders, and mitigate the effects of socioeconomic deprivation. FUNDING: Bill & Melinda Gates Foundation and Public Health England.


Subject(s)
Health Status , Poverty Areas , Aged , Aged, 80 and over , Cause of Death/trends , England/epidemiology , Female , Health Status Disparities , Humans , Incidence , Life Expectancy/trends , Life Tables , Male , Prevalence , Risk Factors
3.
BMC Public Health ; 13 Suppl 3: S8, 2013.
Article in English | MEDLINE | ID: mdl-24564764

ABSTRACT

BACKGROUND: Exposure to household air pollution (HAP) from cooking with solid fuels affects 2.8 billion people in developing countries, including children and pregnant women. The aim of this review is to propose intervention estimates for child survival outcomes linked to HAP. METHODS: Systematic reviews with meta-analysis were conducted for ages 0-59 months, for child pneumonia, adverse pregnancy outcomes, stunting and all-cause mortality. Evidence for each outcome was assessed against Bradford-Hill viewpoints, and GRADE used for certainty about intervention effect size for which all odds ratios (OR) are presented as protective effects. RESULTS: Reviews found evidence linking HAP exposure with child ALRI, low birth weight (LBW), stillbirth, preterm birth, stunting and all-cause mortality. Most studies were observational and rated low/very low in GRADE despite strong causal evidence for some outcomes; only one randomised trial was eligible.Intervention effect (OR) estimates of 0.64 (95% CI: 0.55, 0.75) for ALRI, 0.71 (0.65, 0.79) for LBW and 0.66 (0.54, 0.81) for stillbirth are proposed, specific outcomes for which causal evidence was sufficient. Exposure-response evidence suggests this is a conservative estimate for ALRI risk reduction expected with sustained, low exposure. Statistically significant protective ORs were also found for stunting [OR=0.79 (0.70, 0.89)], and in one study of pre-term birth [OR=0.70 (0.54, 0.90)], indicating these outcomes would also likely be reduced. Five studies of all-cause mortality had an OR of 0.79 (0.70, 0.89), but heterogenity precludes a reliable estimate for mortality impact. Although interventions including clean fuels and improved solid fuel stoves are available and can deliver low exposure levels, significant challenges remain in achieving sustained use at scale among low-income households. CONCLUSIONS: Reducing exposure to HAP could substantially reduce the risk of several child survival outcomes, including fatal pneumonia, and the proposed effects could be achieved by interventions delivering low exposures. Larger impacts are anticipated if WHO air quality guidelines are met. To achieve these benefits, clean fuels should be adopted where possible, and for other households the most effective solid fuel stoves promoted. To strengthen evidence, new studies with thorough exposure assessment are required, along with evaluation of the longer-term acceptance and impacts of interventions.


Subject(s)
Air Pollution, Indoor/prevention & control , Child Welfare/statistics & numerical data , Cooking , Environmental Exposure/prevention & control , Inhalation Exposure/prevention & control , Respiratory Tract Diseases/epidemiology , Adult , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/statistics & numerical data , Child , Developing Countries , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Family Characteristics , Female , Humans , Infant , Infant, Newborn , Inhalation Exposure/adverse effects , Inhalation Exposure/statistics & numerical data , Pregnancy , Respiratory Tract Diseases/prevention & control , Risk Factors , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...