Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Gerontol ; 181: 112267, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37562546

ABSTRACT

BACKGROUND: Immune checkpoints and their ligands are important actors of lymphocytes and monocytes activation's regulation. Their expression level within T cells changes with aging. Despite the major impact of aging on monocytes, there is no data about the expression of ICs on monocytes from old patients. The objective of our study is to describe the expression of ICs and their ligands on monocytes from young individuals compared to old patients. METHODS: We included 18 old control (>75 years old), 10 young control (<55 years old) and 45 old patients with hip fracture (HF). Phenotypical and functional analyses were performed on cryopreserved PBMCs. RESULTS: There is a differential expression of immune checkpoints and their ligands within monocyte subtypes regardless of age at baseline. After stimulation, a differential expression of immune checkpoints in young subjects but not in old subjects was observed which would be in favor of a regulation defect in old subjects. We hypothesize that this lack of regulation could partially explain the excess production of pro-inflammatory cytokines by the stimulated monocytes in old subjects. In HF, we also observe a differential expression of immune checkpoints, especially in old patients with a poor prognosis. CONCLUSION: Our results suggest that the immune regulation which should take place post-acute stress may be affected in old individuals.


Subject(s)
Cytokines , Monocytes , Humans , Aged , Ligands , Cytokines/metabolism , Aging , T-Lymphocytes
2.
Hum Vaccin Immunother ; 19(2): 2232247, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37417353

ABSTRACT

Following acute stress such as trauma or sepsis, most of critically ill elderly patients become immunosuppressed and susceptible to secondary infections and enhanced mortality. We have developed a virus-based immunotherapy encoding human interleukin-7 (hIL-7) aiming at restoring both innate an adaptative immune homeostasis in these patients. We assessed the impact of this encoded hIL-7 on the ex vivo immune functions of T cells from PBMC of immunosenescent patients with or without hip fracture. T-cell ex vivo phenotyping was characterized in terms of senescence (CD57), IL-7 receptor (CD127) expression, and T cell differentiation profile. Then, post stimulation, activation status, and functionality (STAT5/STAT1 phosphorylation and T cell proliferation assays) were evaluated by flow cytometry. Our data show that T cells from both groups display immunosenescence features, express CD127 and are activated after stimulation by virotherapy-produced hIL-7-Fc. Interestingly, hip fracture patients exhibit a unique functional ability: An important T cell proliferation occurred compared to controls following stimulation with hIL-7-Fc. In addition, stimulation led to an increased naïve T cell as well as a decreased effector memory T cell proportions compared to controls. This preliminary study indicates that the produced hIL-7-Fc is well recognized by T cells and initiates IL-7 signaling through STAT5 and STAT1 phosphorylation. This signaling efficiently leads to T cell proliferation and activation and enables a T cell "rejuvenation." These results are in favor of the clinical development of the hIL-7-Fc expressing virotherapy to restore or induce immune T cell responses in immunosenescent hip fracture patients.


Subject(s)
Immunosenescence , Interleukin-7 , T-Lymphocytes , Aged , Humans , Immunotherapy , Interleukin-7/pharmacology , Leukocytes, Mononuclear/metabolism , STAT5 Transcription Factor/metabolism , T-Lymphocytes/metabolism
3.
Acta Neuropathol ; 144(6): 1157-1170, 2022 12.
Article in English | MEDLINE | ID: mdl-36197469

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.


Subject(s)
Muscular Dystrophy, Oculopharyngeal , Humans , Mice , Animals , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/pathology , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Heterografts , Disease Models, Animal , Molecular Chaperones/metabolism , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism
4.
Biomedicines ; 10(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35740450

ABSTRACT

Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases. Although the link between LGMD and its genetic origins has been determined, LGMD still represent an unmet medical need. Here, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides a renewable and an alternative source of skeletal muscle cells (skMC) to primary, immortalized, or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins that cause LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.

5.
J Cachexia Sarcopenia Muscle ; 13(3): 1771-1784, 2022 06.
Article in English | MEDLINE | ID: mdl-35319169

ABSTRACT

BACKGROUND: Fibrosis is defined as an excessive accumulation of extracellular matrix (ECM) components. Many organs are subjected to fibrosis including the lung, liver, heart, skin, kidney, and muscle. Muscle fibrosis occurs in response to trauma, aging, or dystrophies and impairs muscle function. Fibrosis represents a hurdle for the treatment of human muscular dystrophies. While data on the mechanisms of fibrosis have mostly been investigated in mice, dystrophic mouse models often do not recapitulate fibrosis as observed in human patients. Consequently, the cellular and molecular mechanisms that lead to fibrosis in human muscle still need to be identified. METHODS: Combining mass cytometry, transcriptome profiling, in vitro co-culture experiments, and in vivo transplantation in immunodeficient mice, we investigated the role and nature of nonmyogenic cells (fibroadipogenic progenitors, FAPs) from human fibrotic muscles of healthy individuals (FibMCT ) and individuals with oculopharyngeal muscular dystrophy (OPMD; FibMOP ), as compared with nonmyogenic cells from human nonfibrotic muscle (MCT ). RESULTS: We found that the proliferation rate of FAPs from fibrotic muscle is 3-4 times higher than those of FAPs from nonfibrotic muscle (population doubling per day: MCT 0.2 ± 0.1, FibMCT 0.7 ± 0.1, and FibMOP 0.8 ± 0.3). When cocultured with muscle cells, FAPs from fibrotic muscle impair the fusion index unlike MCT FAPs (myoblasts alone 57.3 ± 11.1%, coculture with MCT 43.1 ± 8.9%, with FibMCT 31.7 ± 8.2%, and with FibMOP 36.06 ± 10.29%). We also observed an increased proliferation of FAPs from fibrotic muscles in these co-cultures in differentiation conditions (FibMCT +17.4%, P < 0.01 and FibMOP +15.1%, P < 0.01). This effect is likely linked to the increased activation of the canonical TGFß-SMAD pathway in FAPs from fibrotic muscles evidenced by pSMAD3 immunostaining (P < 0.05). In addition to the profibrogenic TGFß pathway, we identified endothelin as a new actor implicated in the altered cross-talk between muscle cells and fibrotic FAPs, confirmed by an improvement of the fusion index in the presence of bosentan, an endothelin receptor antagonist (from 33.8 ± 10.9% to 52.9 ± 10.1%, P < 0.05). CONCLUSIONS: Our data demonstrate the key role of FAPs and their cross-talk with muscle cells through a paracrine signalling pathway in fibrosis of human skeletal muscle and identify endothelin as a new druggable target to counteract human muscle fibrosis.


Subject(s)
Adipogenesis , Muscular Dystrophy, Oculopharyngeal , Animals , Endothelins/metabolism , Feedback , Fibrosis , Humans , Mice , Muscle Fibers, Skeletal , Muscle, Skeletal/pathology , Muscular Dystrophy, Oculopharyngeal/metabolism , Transforming Growth Factor beta/metabolism
6.
Neurotherapeutics ; 18(2): 1137-1150, 2021 04.
Article in English | MEDLINE | ID: mdl-33533011

ABSTRACT

Prion diseases are caused by the propagation of PrPSc, the pathological conformation of the PrPC prion protein. The molecular mechanisms underlying PrPSc propagation are still unsolved and no therapeutic solution is currently available. We thus sought to identify new anti-prion molecules and found that flunarizine inhibited PrPSc propagation in cell culture and significantly prolonged survival of prion-infected mice. Using an in silico therapeutic repositioning approach based on similarities with flunarizine chemical structure, we tested azelastine, duloxetine, ebastine, loperamide and metixene and showed that they all have an anti-prion activity. Like flunarizine, these marketed drugs reduced PrPSc propagation in cell culture and in mouse cerebellum organotypic slice culture, and inhibited the protein folding activity of the ribosome (PFAR). Strikingly, some of these drugs were also able to alleviate phenotypes due to PABPN1 nuclear aggregation in cell and Drosophila models of oculopharyngeal muscular dystrophy (OPMD). These data emphasize the therapeutic potential of anti-PFAR drugs for neurodegenerative and neuromuscular proteinopathies.


Subject(s)
Drug Delivery Systems/methods , Flunarizine/administration & dosage , Poly(A)-Binding Protein I/metabolism , Prion Diseases/metabolism , Protein Aggregates/drug effects , Protein Folding/drug effects , Animals , Calcium Channel Blockers/administration & dosage , Cell Line , Databases, Factual , Drosophila , Female , Mice , Mice, Transgenic , Organ Culture Techniques , Poly(A)-Binding Protein I/antagonists & inhibitors , Poly(A)-Binding Protein I/genetics , Prion Diseases/drug therapy , Prion Diseases/genetics , Prion Proteins/antagonists & inhibitors , Prion Proteins/genetics , Prion Proteins/metabolism , Protein Aggregates/physiology , Sheep
7.
Hum Gene Ther ; 31(3-4): 233-240, 2020 02.
Article in English | MEDLINE | ID: mdl-31880951

ABSTRACT

The adeno-associated virus (AAV) vector is an efficient tool for gene delivery in skeletal muscle. AAV-based therapies show promising results for treatment of various genetic disorders, including muscular dystrophy. These dystrophies represent a heterogeneous group of diseases affecting muscles and typically characterized by progressive skeletal muscle wasting and weakness and the development of fibrosis. The tropism of each AAV serotype has been extensively studied using systemic delivery routes, but very few studies have compared their transduction efficiency through direct intramuscular injection. Yet, in some muscular dystrophies, where only a few muscles are primarily affected, a local intramuscular injection to target these muscles would be the most appropriate route. A comprehensive comparison between different recombinant AAV (rAAV) serotypes is therefore needed. In this study, we investigated the transduction efficiency of rAAV serotypes 1-10 by local injection in skeletal muscle of control C57BL/6 mice. We used a CMV-nls-LacZ reporter cassette allowing nuclear expression of LacZ to easily localize targeted cells. Detection of ß-galactosidase activity on muscle cryosections demonstrated that rAAV serotypes 1, 7, 8, 9, and 10 were more efficient than the others, with rAAV9 being the most efficient in mice. Furthermore, using a model of human muscle xenograft in immunodeficient mice, we observed that in human muscle, rAAV8 and rAAV9 had similar transduction efficiency. These findings demonstrate for the first time that the human muscle xenograft can be used to evaluate AAV-based therapeutical approaches in a human context.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Muscle, Skeletal/metabolism , Transduction, Genetic , Animals , Dependovirus/classification , Female , Gene Expression , Genes, Reporter , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Humans , Injections, Intramuscular , Male , Mice , Mice, Knockout , Mice, Transgenic , Serogroup , Transgenes
8.
Hum Mol Genet ; 28(10): 1694-1708, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30649389

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis. GA targets various cell processes, including the unfolded protein response (UPR), which acts to attenuate endoplasmic reticulum (ER) stress. We demonstrate that GA increases both the phosphorylation of the eukaryotic translation initiation factor 2α subunit and the splicing of Xbp1, key components of the UPR. Altogether these data show that modulation of protein folding regulation is beneficial for OPMD and promote the further development of GA or its derivatives for treatment of OPMD in humans. Furthermore, they support the recent evidences that treating ER stress could be therapeutically relevant in other more common proteinopathies.


Subject(s)
Guanabenz/pharmacology , Muscular Dystrophy, Oculopharyngeal/drug therapy , Poly(A)-Binding Protein I/genetics , X-Box Binding Protein 1/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Fibrosis/drug therapy , Fibrosis/genetics , Fibrosis/pathology , Humans , Mice , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/pathology , Phosphorylation/drug effects , Protein Aggregates/drug effects , Protein Aggregates/genetics , Protein Folding , Unfolded Protein Response/drug effects
9.
Malar J ; 17(1): 356, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30305101

ABSTRACT

BACKGROUND: In sub-Saharan Africa, malaria is a major cause of morbidity and mortality, in particular in children and pregnant women. During pregnancy, Plasmodium falciparum infected red blood cells expressing VAR2CSA are selected from circulation by selective cytoadherence to chondroitin sulfate proteoglycan receptors expressed in the placenta, leading to an increased susceptibility to malaria, long-lasting infections and poor pregnancy outcome. Partly because of these long-lasting infections, women were reported to have a higher density of gametocytes in their peripheral blood, and are considered as a potential reservoir for malaria transmission. To improve pregnancy outcome in areas of high malaria transmission, The WHO recommends intermittent preventive treatment with sulfadoxine/pyrimethamine (IPTp-SP) during antenatal care visits. The effect of IPTp-SP on gametocyte carriage in infected pregnant women was studied. METHODS: The levels of transcription of three gametocytes stage-specific genes Pfs16 (expressed by sexually-committed ring stage parasites and fully matured gametocytes), Pfs25 (expressed by female mature gametocytes) and Pfs230 (expressed by male mature gametocytes) were assessed by real-time PCR in 50 P. falciparum infected women at early pregnancy (before implementation of IPTp-SP), and in 50 infected women at delivery. Sex ratios of male and female gametocytes were determined in these women to assess the effect of IPTp-SP on the gametocyte populations. RESULTS: The data show that the three transcript types specific to Pfs16, Pfs25 and Pfs230 were detected in all samples, both at inclusion and delivery. Levels of Pfs25 and Pfs230 transcripts were higher at delivery than at inclusion (p = 0.042 and p = 0.003), while the opposite was observed for Pfs16 (p = 0.048). The ratio of male/female gametocyte transcript levels was higher at delivery than at inclusion (p = 0.018). Since a mixed gender late stage gametocyte culture was used as a positive control, male and female gametocytes could not be quantified in an absolute way in the samples. However, the amplification reliability of the Pfs25 and Pfs230 markers in the samples could be checked. A relative quantity of each type of Pfs transcript was, therefore, used to calculate the sex ratio proxy. CONCLUSION: This study demonstrates that IPTp-SP treatment contributes to modify the parasite populations' structure during pregnancy. In line with previous studies, we suggest that the continued use of SP in pregnant women as IPTp, despite having a beneficial effect on the pregnancy outcome, could be a risk factor for increased transmission. This reinforces the need for an alternative to the SP drug for malaria prevention during pregnancy.


Subject(s)
Antigens, Protozoan/metabolism , Antimalarials/therapeutic use , Malaria, Falciparum/prevention & control , Membrane Proteins/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Adolescent , Adult , Benin , Drug Combinations , Female , Humans , Plasmodium falciparum/isolation & purification , Pregnancy , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...