Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8009): 878-886, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509365

ABSTRACT

Targeted protein degradation and stabilization are promising therapeutic modalities because of their potency, versatility and their potential to expand the druggable target space1,2. However, only a few of the hundreds of E3 ligases and deubiquitinases in the human proteome have been harnessed for this purpose, which substantially limits the potential of the approach. Moreover, there may be other protein classes that could be exploited for protein stabilization or degradation3-5, but there are currently no methods that can identify such effector proteins in a scalable and unbiased manner. Here we established a synthetic proteome-scale platform to functionally identify human proteins that can promote the degradation or stabilization of a target protein in a proximity-dependent manner. Our results reveal that the human proteome contains a large cache of effectors of protein stability. The approach further enabled us to comprehensively compare the activities of human E3 ligases and deubiquitinases, identify and characterize non-canonical protein degraders and stabilizers and establish that effectors have vastly different activities against diverse targets. Notably, the top degraders were more potent against multiple therapeutically relevant targets than the currently used E3 ligases cereblon and VHL. Our study provides a functional catalogue of stability effectors for targeted protein degradation and stabilization and highlights the potential of induced proximity screens for the discovery of new proximity-dependent protein modulators.


Subject(s)
Deubiquitinating Enzymes , Protein Stability , Proteolysis , Proteome , Proteomics , Ubiquitin-Protein Ligases , Humans , Deubiquitinating Enzymes/analysis , Deubiquitinating Enzymes/metabolism , Proteome/metabolism , Ubiquitin-Protein Ligases/analysis , Ubiquitin-Protein Ligases/metabolism , Substrate Specificity , Proteolysis Targeting Chimera/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
2.
BMC Evol Biol ; 20(1): 159, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256600

ABSTRACT

BACKGROUND: Sperm storage plays a key role in the reproductive success of many sexually-reproducing organisms, and the capacity of long-term sperm storage varies across species. While there are theoretical explanations for why such variation exists, to date there are no controlled empirical tests of the reproductive consequences of additional long-term sperm storage. While Dipterans ancestrally have three long-term sperm organs, known as the spermathecae, Drosophila contain only two. RESULTS: We identified a candidate gene, which we call spermathreecae (sp3), in which a disruption cause the development of three functional spermathecae rather than the usual two in Drosophila. We used this disruption to test the reproductive consequences of having an additional long-term sperm storage organ. Compared to females with two spermathecae, females with three spermathecae store a greater total number of sperm and can produce offspring a greater length of time. However, they did not produce a greater total number of offspring. CONCLUSIONS: Thus, additional long-term sperm storage in insects may increase female fitness through extending the range of conditions where she produces offspring, or through increasing the quality of offspring via enhanced local sperm competition at fertilization.


Subject(s)
Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Spermatozoa/physiology , Animals , Female , Male , Reproduction/physiology , Spermatozoa/cytology , Time Factors
3.
J Clin Microbiol ; 53(3): 926-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25588654

ABSTRACT

Rapid real-time PCR (RT-PCR) can be performed in a community hospital setting to identify Coccidioides species using the new Becton Dickinson molecular instrument BD Max. Following sample preparation, DNA extraction and PCR were performed on the BD Max using the BD Max extraction kit ExK-DNA-1 test strip and a master mix prepared by BioGX (Birmingham, AL). Sample preparation took 2 h, and testing on the BD Max took an additional 2 h. Method sensitivity and specificity were evaluated along with the limits of detection to confirm that this convenient method would provide medically useful information. Using serial dilutions, the lower limit of detection was determined to be 1 CFU/µl. Testing with this method was validated using samples from various body sites, including bronchial alveolar lavage (BAL) fluid; sputum and lung tissue samples; and pleural and spinal fluids. Safety protocols were established, and specimen preparation processes were developed for the various types of specimens. The range for the cycle threshold (CT) indicating adequate fluorescent signal to signify a positive result was established along with the acceptable range for the internal standard. Positive controls run with each batch were prepared by spiking a pooled BAL fluid specimen with a known dilution of Coccidioides immitis organism. Our experience with testing >330 patient samples shows that clinically relevant information can be available within 4 h using an RT-PCR method on the BD Max to identify Coccidioides spp., with sensitivity equivalent to culture.


Subject(s)
Coccidioides/isolation & purification , Coccidioidomycosis/diagnosis , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Body Fluids/microbiology , Coccidioides/genetics , Humans , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...