Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Geophys ; 58(3): e2019RG000686, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32715303

ABSTRACT

Spaceborne radars offer a unique three-dimensional view of the atmospheric components of the Earth's hydrological cycle. Existing and planned spaceborne radar missions provide cloud and precipitation information over the oceans and land difficult to access in remote areas. A careful look into their measurement capabilities indicates considerable gaps that hinder our ability to detect and probe key cloud and precipitation processes. The international community is currently debating how the next generation of spaceborne radars shall enhance current capabilities and address remaining gaps. Part of the discussion is focused on how to best take advantage of recent advancements in radar and space platform technologies while addressing outstanding limitations. First, the observing capabilities and measurement highlights of existing and planned spaceborne radar missions including TRMM, CloudSat, GPM, RainCube, and EarthCARE are reviewed. Then, the limitations of current spaceborne observing systems, with respect to observations of low-level clouds, midlatitude and high-latitude precipitation, and convective motions, are thoroughly analyzed. Finally, the review proposes potential solutions and future research avenues to be explored. Promising paths forward include collecting observations across a gamut of frequency bands tailored to specific scientific objectives, collecting observations using mixtures of pulse lengths to overcome trade-offs in sensitivity and resolution, and flying constellations of miniaturized radars to capture rapidly evolving weather phenomena. This work aims to increase the awareness about existing limitations and gaps in spaceborne radar measurements and to increase the level of engagement of the international community in the discussions for the next generation of spaceborne radar systems.

2.
PLoS One ; 8(4): e60967, 2013.
Article in English | MEDLINE | ID: mdl-23596510

ABSTRACT

BACKGROUND: Heart failure due to diastolic dysfunction exacts a major economic, morbidity and mortality burden in the United States. Therapeutic agents to improve diastolic dysfunction are limited. It was recently found that Dynamin related protein 1 (Drp1) mediates mitochondrial fission during ischemia/reperfusion (I/R) injury, whereas inhibition of Drp1 decreases myocardial infarct size. We hypothesized that Dynasore, a small noncompetitive dynamin GTPase inhibitor, could have beneficial effects on cardiac physiology during I/R injury. METHODS AND RESULTS: In Langendorff perfused mouse hearts subjected to I/R (30 minutes of global ischemia followed by 1 hour of reperfusion), pretreatment with 1 µM Dynasore prevented I/R induced elevation of left ventricular end diastolic pressure (LVEDP), indicating a significant and specific lusitropic effect. Dynasore also decreased cardiac troponin I efflux during reperfusion and reduced infarct size. In cultured adult mouse cardiomyocytes subjected to oxidative stress, Dynasore increased cardiomyocyte survival and viability identified by trypan blue exclusion assay and reduced cellular Adenosine triphosphate(ATP) depletion. Moreover, in cultured cells, Dynasore pretreatment protected mitochondrial fragmentation induced by oxidative stress. CONCLUSION: Dynasore protects cardiac lusitropy and limits cell damage through a mechanism that maintains mitochondrial morphology and intracellular ATP in stressed cells. Mitochondrial protection through an agent such as Dynasore can have clinical benefit by positively influencing the energetics of diastolic dysfunction.


Subject(s)
Cardiotonic Agents/pharmacology , Heart/drug effects , Hydrazones/pharmacology , Mitochondria, Heart/drug effects , Adenosine Triphosphate/metabolism , Animals , Blood Pressure/drug effects , Cell Survival/drug effects , Dynamins/antagonists & inhibitors , Dynamins/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , In Vitro Techniques , Male , Mice , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...