Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(44): 11198-11202, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30322914

ABSTRACT

A correlated material in the vicinity of an insulator-metal transition (IMT) exhibits rich phenomenology and a variety of interesting phases. A common avenue to induce IMTs in Mott insulators is doping, which inevitably leads to disorder. While disorder is well known to create electronic inhomogeneity, recent theoretical studies have indicated that it may play an unexpected and much more profound role in controlling the properties of Mott systems. Theory predicts that disorder might play a role in driving a Mott insulator across an IMT, with the emergent metallic state hosting a power-law suppression of the density of states (with exponent close to 1; V-shaped gap) centered at the Fermi energy. Such V-shaped gaps have been observed in Mott systems, but their origins are as-yet unknown. To investigate this, we use scanning tunneling microscopy and spectroscopy to study isovalent Ru substitutions in Sr3(Ir1-xRux)2O7 (0 ≤ x ≤ 0.5) which drive the system into an antiferromagnetic, metallic state. Our experiments reveal that many core features of the IMT, such as power-law density of states, pinning of the Fermi energy with increasing disorder, and persistence of antiferromagnetism, can be understood as universal features of a disordered Mott system near an IMT and suggest that V-shaped gaps may be an inevitable consequence of disorder in doped Mott insulators.

2.
Nat Commun ; 5: 3377, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24566714

ABSTRACT

Interest in many strongly spin-orbit-coupled 5d-transition metal oxide insulators stems from mapping their electronic structures to a J(eff)=1/2 Mott phase. One of the hopes is to establish their Mott parent states and explore these systems' potential of realizing novel electronic states upon carrier doping. However, once doped, little is understood regarding the role of their reduced Coulomb interaction U relative to their strongly correlated 3d-electron cousins. Here we show that, upon hole-doping a candidate J(eff)=1/2 Mott insulator, carriers remain localized within a nanoscale phase-separated ground state. A percolative metal-insulator transition occurs with interplay between localized and itinerant regions, stabilizing an antiferromagnetic metallic phase beyond the critical region. Our results demonstrate a surprising parallel between doped 5d- and 3d-electron Mott systems and suggest either through the near-degeneracy of nearby electronic phases or direct carrier localization that U is essential to the carrier response of this doped spin-orbit Mott insulator.

3.
Science ; 341(6153): 1496-9, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23989954

ABSTRACT

In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb(1-x)Sn(x)Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.

4.
Nat Mater ; 12(8): 707-13, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23708328

ABSTRACT

The Ruddlesden-Popper series of iridates (Srn+1IrnO3n+1) have been the subject of much recent attention due to the anticipation of emergent phenomena arising from the cooperative action of spin-orbit-driven band splitting and Coulomb interactions. However, an ongoing debate over the role of correlations in the formation of the charge gap and a lack of understanding of the effects of doping on the low-energy electronic structure have hindered experimental progress in realizing many of the predicted states. Using scanning tunnelling spectroscopy we map out the spatially resolved density of states in Sr3Ir2O7 (Ir327). We show that its parent compound, argued to exist only as a weakly correlated band insulator, in fact possesses a substantial ~ 130 meV charge excitation gap driven by an interplay between structure, spin-orbit coupling and correlations. We find that single-atom defects are associated with a strong electronic inhomogeneity, creating an important distinction between the intrinsic and spatially averaged electronic structure. Combined with first-principles calculations, our measurements reveal how defects at specific atomic sites transfer spectral weight from higher energies to the gap energies, providing a possible route to obtaining metallic electronic states from the parent insulating states in the iridates.

5.
Phys Rev Lett ; 109(16): 166407, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23215103

ABSTRACT

Using scanning tunneling spectroscopy, we study a 3D topological insulator Bi(2)Te(3) with a periodic structural deformation (buckling). The buckled surface allows us to measure the response of Dirac electrons in a magnetic field to the presence of a well-defined potential variation. We find that while the n=0 Landau level exhibits a 12 meV energy shift across the buckled structure at 7 T, the amplitude of this shift changes with the Landau level index. Modeling these effects reveals that the Landau level behavior encodes information on the spatial extent of their wave functions. Our findings have important implications for transport and magnetoresistance measurements in Dirac materials with engineered potential landscapes.

6.
Nat Commun ; 3: 1158, 2012.
Article in English | MEDLINE | ID: mdl-23093195

ABSTRACT

Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

7.
Phys Rev Lett ; 108(8): 087001, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463557

ABSTRACT

We report neutron scattering experiments probing the influence of uniaxial strain on both the magnetic and structural order parameters in the parent iron pnictide compound, BaFe2As2. Our data show that modest strain fields along the in-plane orthorhombic b axis can affect significant changes in phase behavior simultaneous to the removal of structural twinning effects. As a result, we demonstrate in BaFe2As2 samples detwinned via uniaxial strain that the in-plane C4 symmetry is broken by both the structural lattice distortion and long-range spin ordering at temperatures far above the nominal (strain-free) phase transition temperatures. Surprising changes in the magnetic order parameter of this system under relatively small strain fields also suggest the inherent presence of magnetic domains fluctuating above the strain-free ordering temperature in this material.

8.
Phys Rev Lett ; 106(20): 206805, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21668255

ABSTRACT

We study interference patterns of a magnetically doped topological insulator Bi(2-x)Fe(x)Te(3+d) by using Fourier transform scanning tunneling spectroscopy and observe several new scattering channels. A comparison with angle-resolved photoemission spectroscopy allows us to unambiguously ascertain the momentum-space origin of distinct dispersing channels along high-symmetry directions and identify those originating from time-reversal symmetry breaking. Our analysis also reveals that the surface state survives far above the energy where angle-resolved photoemission spectroscopy finds the onset of continuum bulk bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...