Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 15(3): e0009254, 2021 03.
Article in English | MEDLINE | ID: mdl-33788840

ABSTRACT

BACKGROUND: In order to protect health workers from SARS-CoV-2, there is need to characterise the different types of patient facing health workers. Our first aim was to determine both the infection status and seroprevalence of SARS-CoV-2 in health workers. Our second aim was to evaluate the occupational and demographic predictors of seropositivity to inform the country's infection prevention and control (IPC) strategy. METHODS AND PRINCIPAL FINDINGS: We invited 713 staff members at 24 out of 35 health facilities in the City of Bulawayo in Zimbabwe. Compliance to testing was defined as the willingness to uptake COVID-19 testing by answering a questionnaire and providing samples for both antibody testing and PCR testing. SARS-COV-2 antibodies were detected using a rapid diagnostic test kit and SAR-COV-2 infection was determined by real-time (RT)-PCR. Of the 713 participants, 635(89%) consented to answering the questionnaire and providing blood sample for antibody testing while 560 (78.5%) agreed to provide nasopharyngeal swabs for the PCR SARS-CoV-2 testing. Of the 635 people (aged 18-73) providing a blood sample 39.1% reported a history of past COVID-19 symptoms while 14.2% reported having current symptoms of COVID-19. The most-prevalent co-morbidity among this group was hypertension (22.0%) followed by asthma (7.0%) and diabetes (6.0%). The SARS-CoV-2 sero-prevalence was 8.9%. Of the 560 participants tested for SARS-CoV-2 infection, 2 participants (0.36%) were positive for SAR-CoV-2 infection by PCR testing. None of the SARS-CoV-2 antibody positive people were positive for SAR-CoV-2 infection by PCR testing. CONCLUSION AND INTERPRETATION: In addition to clinical staff, several patient-facing health workers were characterised within Zimbabwe's health system and the seroprevalence data indicated that previous exposure to SAR-CoV-2 had occurred across the full spectrum of patient-facing staff with nurses and nurse aides having the highest seroprevalence. Our results highlight the need for including the various health workers in IPC strategies in health centres to ensure effective biosecurity and biosafety.


Subject(s)
COVID-19 Serological Testing , COVID-19/epidemiology , Health Personnel , Adolescent , Adult , Aged , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Comorbidity , Female , Health Facilities , Humans , Male , Middle Aged , Occupational Diseases/epidemiology , Occupational Diseases/prevention & control , Occupational Health , Pandemics , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies , Young Adult , Zimbabwe/epidemiology
2.
Pan Afr Med J ; 27: 145, 2017.
Article in English | MEDLINE | ID: mdl-28904673

ABSTRACT

INTRODUCTION: Tuberculosis remains the leading causes of death worldwide with frequencies of mutations in rifampicin and isoniazid resistant Mycobacterium tuberculosis isolates varying according to geographical location. There is limited information in Zimbabwe on specific antibiotic resistance gene mutation patterns in MTB and hence, increased rate of discordant results and mortality due to inappropriate antibiotic prescriptions. The rpoB and katG genes molecular markers are used for detecting rifampicin and isoniazid resistance respectively. Some mutations within these gene sequences are associated with drug resistance as they directly alter gene function. The objectives of this research was to determine the drug resistance profiles in M. tuberculosis isolates that are phenotypically resistant but not detected by the GeneXpert and MTBDRplus kit and also to detect mutations in the rpoB and katG genes which are not detected by the Hain Genotype MTBDRplus kit and GeneXpert diagnosis. METHODS: PCR was used for the amplification of the rpoB and katG genes from MTB isolates collected from human clinical samples between 2008 and 2015. The genes were sequenced and compared to the wild type MTB H37Rv rpoB (accession number L27989) and kat G genes (KP46920), respectively. Sequence analysis results were compared to genotyping results obtained from molecular assays and culture results of all isolates. RESULTS: The most frequent mutation responsible for rifampicin resistance was (25/92) S531L that was detected by using all molecular assays. Some inconsistencies were observed between phenotypic and genotypic assay results for both katG and rpoB genes in 30 strains. For these, eight codons; G507S, T508A, L511V, del513-526, P520P, L524L, R528H, R529Q and S531F were novel mutations. In addition, the I572P/F, E562Q, P564S, and Q490Y mutations were identified as novel mutations outside the rifampicin resistance determining region. In katG gene, amino acid changes to threonine, asparagine and isoleucine exhibited high degrees of polymorphism such as V473N, D311N, and L427I. The R463L (20/92) amino acid substitution was most common but was not associated with isoniazid resistance. CONCLUSION: These finding indicate that molecular assay kit diagnosis that is based on the rpoB and katG genes should be improved to cater for the genetic variations associated with the geographic specificity of the target genes and be able to detect most prevalent mutations in different areas.


Subject(s)
Bacterial Proteins/genetics , Catalase/genetics , DNA-Directed RNA Polymerases/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Aged , Amino Acid Substitution , Antitubercular Agents/pharmacology , Child , Drug Resistance, Multiple, Bacterial/genetics , Female , Genotype , Humans , Isoniazid/pharmacology , Male , Middle Aged , Molecular Diagnostic Techniques , Mutation , Mycobacterium tuberculosis/isolation & purification , Polymerase Chain Reaction , Rifampin/pharmacology , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult , Zimbabwe
3.
Genome Announc ; 3(4)2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26272573

ABSTRACT

Ruminant herbivores utilize a symbiotic relationship with microorganisms in their rumen to exploit fibrous foods for nutrition. We report the metagenome sequences of the greater kudu (Tragelaphus strepsiceros) rumen digesta, revealing a diverse community of microbes and some novel hydrolytic enzymes.

SELECTION OF CITATIONS
SEARCH DETAIL
...