Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(42): 39730-39738, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901558

ABSTRACT

The hazards of polymer waste and emitted gas on the environment pose a global challenge. As a trial to control this, the current work aims to reuse the polymer waste mix (PM) as fillers in calcium silicate to prepare new composites of environmentally friendly polymer concrete. PM was first subjected to treatment to obtain treated PM (TPM) and then was filled in new dicalcium silicate cement with different concentrations. The microstructural characterizations declare the successful preparation of the dicalcium silicate base material. After the curing reaction, the precipitated carbonate main product is responsible for the gained properties. The CO2 uptake% in the proposed composites reached 16.6%, referring to the successful storage of CO2 gas during curing. The treatment reaction led to an increase in the flexural and compression strengths due to the strengthening of the polymer waste mix-cement interface; the strengths were increased gradually with more contents of TPM fillers. 7% TPM-cement concentration achieved the highest flexural strength and compression strength of10.2 and 12.7%, respectively, compared with blank cement. The used polymer improved slightly the pull-off force of the prepared cement, and 7 and 5% TPM-cement composites have the maximum values. All the proposed composites passed the impact testing without failure, where the combination between the polymer waste and silicate cement resulted in a stable composite surface. Compared with the blank, the different concentrations of TPM-cement composites show more stability against water absorption. In addition, the proposed composites and blank cement have a very low carbon dioxide emission. The ability to recycle the polymer waste, form new type of low-energy silicate, improve the mechanical and surface properties, uptake CO2 gas, and reduce gas emission makes the proposed polymer waste mix-cement composites as environmentally friendly construction products.

2.
Molecules ; 28(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894558

ABSTRACT

In recent years, major economies have implemented carbon reduction and carbon neutrality policies. Furthermore, with advancements in science and technology, carbon dioxide (CO2) is now considered a valuable raw material for producing carbon-based fuels through hydrogenation. Various concentrations of yttrium (referred to as Y hereafter) were introduced to assess their influence on the catalytic performance of CO2 methanation. At a temperature of 300 °C, the catalyst exhibited an impressive CO2 conversion rate of 78.4% and maintained remarkable stability throughout a rigorous 100 h stability assessment. The findings suggest that the inclusion of yttrium (Y) promotes the formation of oxygen vacancies and alkaline sites on the catalyst. This, in turn, enhances the reducibility of nickel species, improves the dispersion of nickel particles, and plays a pivotal role in enhancing thermal stability. Furthermore, it offers an innovative design approach for creating highly efficient composite CO2 methanation catalysts by controlling particle size and harnessing synergistic catalytic effects at the metal/support interface.

3.
Environ Sci Pollut Res Int ; 30(49): 108067-108084, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37743450

ABSTRACT

With the growing need for high-purity rare-earth elements (REEs), the separation of these REEs has received much attention recently. The objective of this research is to produce chitosan from shrimp waste, then modify it with different functionality, and investigate the adsorption properties of chitosan adsorbents towards La(III) ions. First, from shrimp waste, chitosan (ch) with a significant degree of deacetylation, purity, and solubility was produced. The purified chitosan was cross-linked with epichlorohydrin (ep), and then, it was modified with 3,6,9,12-tetraazatetradecane-1,14-diamine (HA) to produce polyaminated chitosan (HA@ep@Ch). The polycarboxylated/imine chitosan (CM@HA@ep@Ch) was obtained by treating polyaminated chitosan with chloroacetic acid in isopropyl alcohol. The chitosan adsorbents were characterized and applied for lanthanum recovery from synthetic and monazite leach liquor samples. The factors controlling the recovery process were studied and discussed. The performance of the adsorbents was achieved through equilibrium, dynamic, and isothermal studies. HA@ep@Ch and CM@HA@ep@Ch showed good performance for lanthanum recovery with a maximum capacity of 114.52 and 141.76 mg/g at 330 K, respectively. The isotherm parameters refer to the monolayer of lanthanum adsorbed into the adsorbents through chelation and ion exchange mechanisms. A 0.5-M HCl solution was found effective to elute 95.8% of the adsorbed lanthanum on HA@ep@Ch, and 93.4% of the adsorbed lanthanum on CM@HA@ep@Ch. The adsorbents showed greater selectivity in extracting La, Ce, Pr, Nd, and Sm (62-75%) from REE leach liquid compared to extracting other REEs (20-41%).


Subject(s)
Chitosan , Metals, Rare Earth , Lanthanum , Chelating Agents , Adsorption
4.
ACS Omega ; 8(9): 8804-8814, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910944

ABSTRACT

Climate change is being currently faced globally; controlling the plastic waste and gas emission is aimed to reduce their hazardous effects. In this work, polyethylene terephthalate (PET) and polyvinyl chloride (PVC) polymer wastes are used as fillers to calcium silicate. Chemical treatment was performed to get the best efficiency of the binder material with the treated PET (TPET) and treated PVC (TPVC). The used silicate, new nonhydraulic dicalcium silicate, was synthesized by sintering. A new environmentally friendly polymer concrete, based on different concentrations of PET-/TPET-/PVC-/TPVC-dicalcium silicate composites, was prepared and cured by carbonation. FTIR analysis confirms that the treatment gave functional groups on the polymer surface; also, the hydrophilicity was increased after treatment. SEM photos show that the treated polymers have a rougher surface, which led to improved attachment with cement. The structures of the prepared and cured cement materials are proved by XRD, FTIR analysis, and SEM, through the change of calcium silicate to carbonate. Carbon footprint is used to analyze the environmental implications of the prepared composites. After the treatment reaction, the TPET-cement and TPVC-cement composites showed improved compression and flexural properties and more stability against water absorption. The novelty arises from recycling this plastic waste in the proposed low-energy dicalcium silicate cement, for the first time, to give improved environmentally friendly composites after converting CO2 gas to carbonates, with the reduced carbon footprint.

5.
Environ Sci Pollut Res Int ; 29(57): 86825-86839, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35796927

ABSTRACT

Facile solvothermal techniques were used to manufacture ZnS/1T-2H MoS2 nanocomposite (ZMS) with outstanding adsorption-photocatalytic activity. The formed catalyst was characterized by different tools; XRD, HR-TEM, EDX, FTIR, Raman, N2adsorprion/desorption, Zeta potential, PL,and XPS. The analysis provided the formation on mixed phase of metallic 1Tand 2H phases. ZMS has a high porosity and large specific surface area, and it has a high synergistic adsorption-photocatalytic degradation effect for MB, with a removal efficiency of ≈100% in 45 minutes under visible light irradiation. The extraordinary MB removal efficiency of ZMS was attributed not only to the high specific surface area (49.15 m2/g) and precious reactive sites generated by ZMS, but also to the formation of 1T and 2H phases if compared to pristine MoS2 (MS). The best adsorption affinity was induced by the existance of 1T phase. The remarkably enhanced photocatalytic activity of ZMS nanocomposite can be ascribed to the 2D heterostructure which enhances the adsorption for pollutants, provides abundant reaction active sites, extends the photoresponse to visible light region.

6.
Toxicol Res (Camb) ; 9(2): 81-90, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32440339

ABSTRACT

Effect of cobalt manganese ferrite nanoparticles (M-NPs) (Co0.5Mn0.5Fe2O4) on vanadium hazards was assessment in the present study. Four groups of adult male albino rats [control group and three variably treated groups with ammonium metavanadate accompanied with or without cobalt M-NPs] were studied. The oral administration of ammonium metavanadate (Am.V) (20 mg/kg b.wt.) demonstrated the facility of vanadium to distribute and accumulate in the distinctive body organs and ordered as kidney > liver > lung > brain > spleen. Also, Am.V administration induce a significant disturbance in many physiological parameters (RBS, cholesterol, triglyceride, aspartate transaminase, alanine transaminase, Alb., bilirubin, Alk.Ph., urea, creat., Hb%, red blood cell count and packed cell volume) which might be expected to the liberation of free radicals according to the vanadium intoxication or its ability to disturb many body metabolisms. On the other hand, the intraperitoneal administration of 5% M-NPs in parallel with Am.V orally administration showed the ability of M-NPs to reduce Am.V dangerous impacts, which might be resulted from the essentiality of M-NPs metals to the body metabolism and to its free radicals scavenging properties. So, M-NPs could reduce Am.V hazardous effects.

7.
Sci Total Environ ; 719: 137396, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32143096

ABSTRACT

Composite beads (APEI*), obtained by the controlled interaction of algal biomass with PEI, followed by ionotropic gelation and crosslinking processes using CaCl2/glutaraldehyde solution, constitute efficient supports for metal binding. The quaternization of algal/PEI beads (Q-APEI*) significantly increases the sorption properties of the composite beads (APEI*) for As(V). The materials are characterized by SEM/EDX, TGA, BET, elemental analysis, FTIR, XPS, and titration. The sorption of As(V) is studied in function of pH while sorption mechanism is discussed in function of metal speciation and surface characteristics of the sorbent. Optimum sorption occurs at pH close to 7. Fast uptake kinetics, correlated to textural properties are successfully fitted by pseudo-first order rate equation and the Crank equation (for resistance to intraparticle diffusion); equilibrium is reached with 45-60 min. The Langmuir equation finely fits sorption isotherms; maximum sorption capacity reaches 1.34 mmol As g-1. Arsenic can be completely eluted using 0.5 M CaCl2/0.5 M HCl solutions; the sorbent maintains high sorption and desorption efficiencies for a minimum of 5 cycles. The sorbent is tested for the removal of As(V) from mining effluents containing high concentration of iron and traces of zinc. At pH 3, the sorbent shows remarkable selectivity for As(V) over Fe. After controlling the initial pH to 5, a sorbent dosage of 2 g L-1 is sufficient for achieving the complete recovery of As(V) from mining effluent (corresponding to initial concentration of 1.295 mmol As L-1).


Subject(s)
Polyethyleneimine/chemistry , Adsorption , Arsenic , Hydrogen-Ion Concentration , Kinetics , Solutions , Stramenopiles , Water , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...