Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 13(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36831857

ABSTRACT

Joint attention skills deficiency in Autism spectrum disorder (ASD) hinders individuals from communicating effectively. The P300 Electroencephalogram (EEG) signal-based brain-computer interface (BCI) helps these individuals in neurorehabilitation training to overcome this deficiency. The detection of the P300 signal is more challenging in ASD as it is noisy, has less amplitude, and has a higher latency than in other individuals. This paper presents a novel application of the variational mode decomposition (VMD) technique in a BCI system involving ASD subjects for P300 signal identification. The EEG signal is decomposed into five modes using VMD. Thirty linear and non-linear time and frequency domain features are extracted for each mode. Synthetic minority oversampling technique data augmentation is performed to overcome the class imbalance problem in the chosen dataset. Then, a comparative analysis of three popular machine learning classifiers is performed for this application. VMD's fifth mode with a support vector machine (fine Gaussian kernel) classifier gave the best performance parameters, namely accuracy, F1-score, and the area under the curve, as 91.12%, 91.18%, and 96.6%, respectively. These results are better when compared to other state-of-the-art methods.

2.
Sensors (Basel) ; 20(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935948

ABSTRACT

The vibration monitoring of ball bearings of a rotating machinery is a crucial aspect for smooth functioning and sustainability of plants. The wireless vibration monitoring using conventional Nyquist sampling techniques is costly in terms of power consumption, as it generates lots of data that need to be processed. To overcome this issue, compressive sensing (CS) can be employed, which directly acquires the signal in compressed form and hence reduces power consumption. The compressive measurements so generated can easily be transmitted to the base station and the original signal can be recovered there using CS reconstruction algorithms to diagnose the faults. However, the CS reconstruction is very costly in terms of computational time and power. Hence, this conventional CS framework is not suitable for diagnosing the machinery faults in real time. In this paper, a bearing condition monitoring framework is presented based on compressed signal processing (CSP). The CSP is a newer research area of CS, in which inference problems are solved without reconstructing the original signal back from compressive measurements. By omitting the reconstruction efforts, the proposed method significantly improves the time and power cost. This leads to faster processing of compressive measurements for solving the required inference problems for machinery condition monitoring. This gives a way to diagnose the machinery faults in real-time. A comparison of proposed scheme with the conventional method shows that the proposed scheme lowers the computational efforts while simultaneously achieving the comparable fault classification accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...