Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 98(3): 696-706, 2022 05.
Article in English | MEDLINE | ID: mdl-34921417

ABSTRACT

The yeast rDNA locus is a suitable model to study nucleotide excision repair (NER) in chromatin. A portion of rRNA genes is transcribed and largely depleted of nucleosomes, the remaining genes are not transcribed and folded in nucleosomes. In G1-arrested cells, most rRNA genes do not have nucleosomes. TC-NER removes UV-induced DNA lesions from the transcribed strand of active genes. GG-NER is less efficient and removes DNA lesions from the nontranscribed strand of active genes and from the inactive genome. Different from mammalian cells, in yeast, the rRNA gene-transcribed strand is repaired by RNA polymerase-I-dependent TC-NER. The opposite nontranscribed strand is repaired faster than both strands of inactive rRNA genes. In log-phase cells, RNA polymerase-I are dislodged from the damaged transcribed strand and partially replaced by nucleosomes. Contrary to log-phase cells, in G1-phase cells few, if any, histones are deposited on the open rRNA genes during NER. In this study, we compared GG-NER efficiency in the rRNA gene coding region: without nucleosomes, partially loaded or wholly loaded with nucleosomes. The results indicate that in log-phase cells histones obstruct GG-NER, whereas in G1-phase cells GG-NER is as efficient as TC-NER.


Subject(s)
Chromatin , Saccharomyces cerevisiae , Chromatin/genetics , DNA Damage , DNA Repair , DNA, Ribosomal/genetics , Genes, rRNA , Histones/genetics , Nucleosomes/genetics , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...