Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(23): 17188-17196, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36410104

ABSTRACT

The species sensitivity distribution (SSD) is an internationally accepted approach to hazard estimation using the probability distribution of toxicity values that is representative of the sensitivity of a group of species to a chemical. Application of SSDs in ecological risk assessment has been limited by insufficient taxonomic diversity of species to estimate a statistically robust fifth percentile hazard concentration (HC5). We used the toxicity-normalized SSD (SSDn) approach, (Lambert, F. N.; Raimondo, S.; Barron, M. G. Environ. Sci. Technol.2022,56, 8278-8289), modified to include all possible normalizing species, to estimate HC5 values for acute toxicity data for groups of carbamate and organophosphorous insecticides. We computed mean and variance of single chemical HC5 values for each chemical using leave-one-out (LOO) variance estimation and compared them to SSDn and conventionally estimated HC5 values. SSDn-estimated HC5 values showed low uncertainty and high accuracy compared to single-chemical SSDs when including all possible combinations of normalizing species within the chemical-taxa grouping (carbamate-all species, carbamate-fish, organophosphate-fish, and organophosphate-invertebrate). The SSDn approach is recommended for estimating HC5 values for compounds with insufficient species diversity for HC5 computation or high uncertainty in estimated single-chemical HC5 values. Furthermore, the LOO variance approach provides SSD practitioners with a simple computational method to estimate confidence intervals around an HC5 estimate that is nearly identical to the conventionally estimated HC5.


Subject(s)
Water Pollutants, Chemical , Animals , Fishes , Invertebrates , Risk Assessment , Organophosphates , Carbamates , Species Specificity
2.
New Phytol ; 234(6): 2018-2031, 2022 06.
Article in English | MEDLINE | ID: mdl-34668201

ABSTRACT

Water and nutrient acquisition are key drivers of plant health and ecosystem function. These factors impact plant physiology directly as well as indirectly through soil- and root-associated microbial responses, but how they in turn affect aboveground plant-microbe interactions are not known. Through experimental manipulations in the field and growth chamber, we examine the interacting effects of water stress, soil fertility, and arbuscular mycorrhizal fungi on bacterial and fungal communities of the tomato (Solanum lycopersicum) phyllosphere. Both water stress and mycorrhizal disruption reduced leaf bacterial richness, homogenized bacterial community composition among plants, and reduced the relative abundance of dominant fungal taxa. We observed striking parallelism in the individual microbial taxa in the phyllosphere affected by irrigation and mycorrhizal associations. Our results show that soil conditions and belowground interactions can shape aboveground microbial communities, with important potential implications for plant health and sustainable agriculture.


Subject(s)
Microbiota , Mycorrhizae , Solanum lycopersicum , Bacteria , Dehydration , Ecosystem , Solanum lycopersicum/microbiology , Mycorrhizae/physiology , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...