Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 251: 108891, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33120088

ABSTRACT

Mycoplasma gallisepticum, a significant poultry pathogen, has evolved rapidly in its new passerine host since its first reported isolation from house finches in the US in 1994. In poultry, M. gallisepticum infects the upper respiratory tract, causing tracheal mucosal thickening and inflammation, in addition to inflammation of the reproductive tract. However, in house finches M. gallisepticum primarily causes inflammation of the conjunctiva. Given that different tissues are primarily affected by the same pathogen in different hosts, we have compared the early changes in gene expression of the phase-variable lipoproteins (vlhA) gene family of M. gallisepticum collected directly from target tissues in both hosts. Previous data have demonstrated that vlhA genes may be related to virulence, exhibiting changes in expression in a non-stochastic, temporal progression and we hypothesize that this may be influenced by differences in the target host tissue. If this is true, we would expect M. gallisepticum to display a different vlhA gene expression pattern in the chicken trachea compared to its expression pattern in house finch conjunctiva. Here we report significant differences in vlhA gene expression patterns between M. gallisepticum collected from chicken tracheas compared to those collected from house finch conjunctiva. While many of the predominant vlhA genes expressed in the input population showed an increase in expression in the chicken trachea at day one postinfection, those same vlhA genes decreased in expression in the house finch. These data suggest that discrete suites of vlhA genes may be involved in M. gallisepticum pathogenesis and tropism for unique tissues in two disparate avian hosts.


Subject(s)
Bacterial Proteins/genetics , Gene Expression , Host Microbial Interactions/genetics , Mycoplasma Infections/veterinary , Mycoplasma gallisepticum/genetics , Poultry Diseases/microbiology , Animals , Chickens/microbiology , Conjunctiva/microbiology , Female , Finches/microbiology , Poultry Diseases/pathology , Sequence Analysis, RNA , Specific Pathogen-Free Organisms , Trachea/microbiology , Virulence
2.
Infect Immun ; 85(6)2017 06.
Article in English | MEDLINE | ID: mdl-28396323

ABSTRACT

Mycoplasma gallisepticum, known primarily as a respiratory pathogen of domestic poultry, has emerged since 1994 as a significant pathogen of the house finch (Haemorhousmexicanus) causing severe conjunctivitis and mortality. House finch-associated M. gallisepticum (HFMG) spread rapidly and increased in virulence for the finch host in the eastern United States. In the current study, we assessed virulence in domestic poultry with two temporally distant, and yet geographically consistent, HFMG isolates which differ in virulence for house finches-Virginia 1994 (VA1994), the index isolate of the epidemic, and Virginia 2013 (VA2013), a recent isolate of increased house finch virulence. Here we report a significant difference between VA1994 and VA2013 in their levels of virulence for chickens; notably, this difference correlated inversely to the difference in their levels of virulence for house finches. VA1994, while moderately virulent in house finches, displayed significant virulence in the chicken respiratory tract. VA2013, while highly virulent in the house finch, was significantly attenuated in chickens relative to VA1994, displaying less-severe pathological lesions in, and reduced bacterial recovery from, the respiratory tract. Overall, these data indicate that a recent isolate of HFMG is greatly attenuated in the chicken host relative to the index isolate, notably demonstrating a virulence phenotype in chickens inversely related to that in the finch host.


Subject(s)
Chickens/microbiology , Finches/microbiology , Mycoplasma Infections/epidemiology , Mycoplasma gallisepticum/isolation & purification , Mycoplasma gallisepticum/pathogenicity , Animals , Female , Mycoplasma Infections/microbiology , Mycoplasma Infections/veterinary , Phenotype , Phylogeny , Virginia , Virulence
3.
J Evol Biol ; 27(6): 1271-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24750277

ABSTRACT

In the mid-1990s, the common poultry pathogen Mycoplasma gallisepticum (MG) made a successful species jump to the eastern North American house finch Haemorhous mexicanus (HM). Subsequent strain diversification allows us to directly quantify, in an experimental setting, the transmission dynamics of three sequentially emergent geographic isolates of MG, which differ in the levels of pathogen load they induce. We find significant among-strain variation in rates of transmission as well as recovery. Pathogen strains also differ in their induction of host morbidity, measured as the severity of eye lesions due to infection. Relationships between pathogen traits are also investigated, with transmission and recovery rates being significantly negatively correlated, whereas transmission and virulence, measured as average eye lesion score over the course of infection, are positively correlated. By quantifying these disease-relevant parameters and their relationships, we provide the first analysis of the trade-offs that shape the evolution of this important emerging pathogen.


Subject(s)
Bird Diseases/transmission , Finches/microbiology , Mycoplasma gallisepticum/pathogenicity , Animals , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/veterinary , Mycoplasma gallisepticum/isolation & purification
4.
J Evol Biol ; 23(8): 1680-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20561136

ABSTRACT

Host genetic diversity can mediate pathogen resistance within and among populations. Here we test whether the lower prevalence of Mycoplasmal conjunctivitis in native North American house finch populations results from greater resistance to the causative agent, Mycoplasma gallisepticum (MG), than introduced, recently-bottlenecked populations that lack genetic diversity. In a common garden experiment, we challenged wild-caught western (native) and eastern (introduced) North American finches with a representative eastern or western MG isolate. Although introduced finches in our study had lower neutral genetic diversity than native finches, we found no support for a population-level genetic diversity effect on host resistance. Instead we detected strong support for isolate differences: the MG isolate circulating in western house finch populations produced lower virulence, but higher pathogen loads, in both native and introduced hosts. Our results indicate that contemporary differences in host genetic diversity likely do not explain the lower conjunctivitis prevalence in native house finches, but isolate-level differences in virulence may play an important role.


Subject(s)
Bird Diseases/microbiology , Finches/genetics , Host-Pathogen Interactions/genetics , Mycoplasma Infections/veterinary , Mycoplasma gallisepticum/pathogenicity , Animals , Bird Diseases/epidemiology , Finches/immunology , Genetic Variation , Immunocompetence/immunology , Microsatellite Repeats/genetics , Mycoplasma Infections/epidemiology , Mycoplasma Infections/microbiology , Mycoplasma gallisepticum/isolation & purification , Prevalence , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...